1 |
BAI B W, DING Y, SHEN F F, et al. Effects of plasma sheath on parameter estimations of linear frequency modulation pulse signal[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 4934‑4943.
|
2 |
MURRAY J J. On the Doppler bias of hyperbolic frequency modulation matched filter time of arrival estimates[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2): 446‑450.
|
3 |
LV X L, XING M D, ZHANG S H, et al. Keystone transformation of the Wigner-Ville distribution for analysis of multicomponent LFM signals[J]. Signal Processing, 2009, 89(5): 791‑806.
|
4 |
LV X L, BI G A, WAN C R, et al. Lv's distribution: principle, implementation, properties, and performance[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3576‑3591.
|
5 |
LI X L, CUI G L, YI W, et al. Manoeuvring target detection based on keystone transform and Lv's distribution[J]. IET Radar Sonar & Navigation, 2016, 10(7): 1234‑1242.
|
6 |
万俊,周宇,张林让,等. 严重方位模糊下的合成孔径雷达微弱运动目标聚焦与参数估计方法[J]. 西安交通大学学报, 2019, 53(6): 85‑91.
|
|
WAN Jun, ZHOU Yu, ZHANG Lin-rang, et al. A method for weak moving target focusing and parameter estimation of synthetic aperture radars in severe azimuth ambiguity[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 85‑91. (in Chinese)
|
7 |
LUO S, LI X M, LI S H, et al. Adaptive interference suppression based on Lv's distribution for DSSS communications[J]. Journal of Circuits, Systems and Computers, 2015, 24(1): 1550012.
|
8 |
金艳,段鹏婷,姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106‑1111.
|
|
JIN Yan, DUAN Peng-ting, JI Hong-bing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1106‑1111. (in Chinese)
|
9 |
JIN K, LAI T, WANG Y B, et al. Parameter estimation of quadratic frequency modulated signal based on three-dimensional scaled Fourier transform[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1689‑1696.
|
10 |
WANG Y, WANG K, JING F L, et al. LFM signal analysis based on improved Lv's distribution[J]. IEEE Access, 2019, 7: 169038‑169046.
|
11 |
LUO S, BI G A, XIAO Y, et al. A keystone-based cosine transform[J]. Circuits, Systems, and Signal Processing, 2017, 36: 3438‑3447.
|
12 |
JIN K, LAI T, WANG Y B, et al. Radar coherent detection for Doppler-ambiguous maneuvering target based on product scaled periodic Lv's distribution[J]. Signal Processing, 2020, 174(15): 107617.
|
13 |
CHEN X L, ZHANG H, GUAN J. Sparse Lv's distribution and its application for radar low-observable maneuvering target detection[C]//2019 International Applied Computa-tional Electromagnetics Society Symposium. Nanjing: ACES, 2019: 1‑2.
|
14 |
LUO S, XU Q, WU T, et al. An introduction to Lv's distribution: definition and performance for time-frequency analysis[C]//Proceedings of 2017 3rd IEEE International Conference on Computer and Communications. New York, USA: IEEE, 2017: 2864‑2867.
|
15 |
PERRY R P, DIPIETRO R C, FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188‑200.
|
16 |
COHEN L. The scale representation[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3275‑3292.
|
17 |
CULHA O, TANIK Y. Low complexity Keystone transform and Radon Fourier transform utilizing Chirp-Z transform[J]. IEEE Access, 2020, 8: 105535‑105541.
|
18 |
SENA D A, ROCCHESSO D. A fast Mellin and Scale transform[J]. EURASIP Journal on Advances in Signal Processing, 2007: 089170.
|
19 |
Pei S C, Huang S G. Fast discrete linear canonical transform based on CM-CC-CM Decomposition and FFT[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 855‑866.
|
20 |
MOGHADASIAN S S, GAZOR S. Sparsely localized time-frequency energy distribution for muti-component LFM signals[J]. IEEE Signal Processing Letters, 2020, 27: 6‑10.
|
21 |
荆福龙,张春杰,司伟建,等. 一种有效的CFCR域LFM信号分析方法[J]. 西安电子科技大学学报, 2019, 46(3): 102‑107.
|
|
JING Fu-long, ZHANG Chun-jie, SI Wei-jian, et al. Effective method for analysis of LFM signals in the CFCR domain[J]. Journal of Xidian University, 2019, 46(3): 102‑107. (in Chinese)
|