电子学报 ›› 2022, Vol. 50 ›› Issue (6): 1492-1520.DOI: 10.12263/DZXB.20210822
所属专题: 长摘要论文
林林1, 黄莉1, 孔磊2, 刘富强1, 闫浩3
收稿日期:
2021-07-01
修回日期:
2022-03-09
出版日期:
2022-06-25
通讯作者:
作者简介:
基金资助:
LIN Lin1, HUANG Li1, KONG Lei2, LIU Fu-qiang1, YAN Hao3
Received:
2021-07-01
Revised:
2022-03-09
Online:
2022-06-25
Published:
2022-06-25
Corresponding author:
Supported by:
摘要:
分子通信是一种利用微小粒子编码、传输和接收信息的通信范式,具有生物兼容性好、尺寸小等特点,是用来构建纳米网络的非常有潜力的通信方案之一.分子通信的概念一经提出就吸引了广泛关注,众多学者的参与使其迅猛发展.目前,分子通信理论已经被广泛研究,相关实验也有了进展.尽管如此,构建实际的分子通信系统还有大量问题亟须解决.为促进分子通信领域更好发展,对分子通信的理论基础和当前研究进展进行系统性的总结是必要的.因此,本文对基于扩散的分子通信的基本概念和研究进展进行了阐述,包括信道模型、信号的编码调制机制以及接收机制;此外,还介绍了分子通信系统的同步机制、移动分子通信系统,以及分子通信实验系统的最新研究进展,并对分子通信未来的研究方向进行了展望.
中图分类号:
林林, 黄莉, 孔磊, 等. 分子通信最新研究进展综述[J]. 电子学报, 2022, 50(6): 1492-1520.
Lin LIN, Li HUANG, Lei KONG, et al. Review of Recent Advancement of Molecular Communication[J]. Acta Electronica Sinica, 2022, 50(6): 1492-1520.
1 | AKYILDIZI F, KAK A, NIES. 6G and beyond: The future of wireless communications systems[J]. IEEE Access, 2020, 8: 133995-134030. |
2 | 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141-148. |
ZHANGP, NIUK, TIANH, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141-148. (in Chinese) | |
3 | 彭木根, 孙耀华, 王文博. 智简6G无线接入网: 架构、技术和展望[J]. 北京邮电大学学报, 2020, 43(3): 1-10. |
PENGM G, SUNY H, WANGW B. Intelligent-concise radio access networks in 6G: Architecture, techniques and insight[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 1-10. (in Chinese) | |
4 | 易芝玲, 王森, 韩双锋, 等. 从5G到6G的思考: 需求、挑战与技术发展趋势[J]. 北京邮电大学学报, 2020, 43(2): 1-9. |
YIZ L, WANGS, HANS F, et al. From 5G to 6G: Requirements, challenges and technical trends[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 1-9. (in Chinese) | |
5 | 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3-11. |
YOUX H, YINH, WUH Q. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3-11. (in Chinese) | |
6 | 魏克军. 全球6G研究进展综述[J]. 移动通信, 2020, 44(3): 34-36, 42. |
WEIK J. Review of global 6G research progresses[J]. Mobile Communications, 2020, 44(3): 34-36, 42. (in Chinese) | |
7 | AKYILDIZI F, BRUNETTIF, BLÁZQUEZC. Nanonetworks: A new communication paradigm[J]. Computer Networks, 2008, 52(12): 2260-2279. |
8 | AKYILDIZI F, JORNETJ M, PIEROBONM. Nanonetworks[J]. Communications of the ACM, 2011, 54(11): 84-89. |
9 | NAKANOT, ECKFORDA W, HARAGUCHIT. Molecular Communication[M]. Cambridge: Cambridge University Press, 2013 |
10 | GUOW S, MIASC, FARSADN, et al. Molecular versus electromagnetic wave propagation loss in macro-scale environments[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2015, 1(1): 18-25. |
11 | STOJANOVICM. Acoustic(Underwater) Communications[M]. New York: John Wiley & Sons, Inc.,2003. |
12 | SUDAT, MOOREM, NAKANOT, et al. Exploratory research on molecular communication between nanomachines[C]//Genetic and Evolutionary Computation Conference(GECCO). Washington:Late Breaking Papers,2005: 29-34. |
13 | NAKANOT, MOOREM J, WEIF, et al. Molecular communication and networking: Opportunities and challenges[J]. IEEE Transactions on NanoBioscience, 2012, 11(2): 135-148. |
14 | HIYAMAS, MORITANIY. Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems[J]. Nano Communication Networks, 2010, 1(1): 20-30. |
15 | DARCHINIK, ALFAA S. Molecular communication via microtubules and physical contact in nanonetworks: A survey[J]. Nano Communication Networks, 2013, 4(2): 73-85. |
16 | NAKANOT, SUDAT, OKAIEY, et al. Molecular communication among biological nanomachines: A layered architecture and research issues[J]. IEEE Transactions on Nanobioscience, 2014, 13(3): 169-197. |
17 | LIZ P, ZHANGJ, CAIS B, et al.Review on molecular communication[J].Journal of China Institute of Communications,2013, 34(5): 152-167. |
18 | FARSADN, YILMAZH B, ECKFORDA, et al. A comprehensive survey of recent advancements in molecular communication[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1887-1919. |
19 | WANGJ X, YINB N, PENGM G. Diffusion based molecular communication: Principle, key technologies, and challenges[J]. China Communications, 2017, 14(2): 1-18. |
20 | SÖLDNERC A, SOCHERE, JAMALIV, et al. A survey of biological building blocks for synthetic molecular communication systems[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2765-2800. |
21 | BUSHS F. Nanoscale Communication Networks[M]. Boston: Artech House, 2010. |
22 | ATAKANB. Molecular Communications and Nanonetworks[M]. New York: Springer, 2016. |
23 | 黎作鹏, 张菁, 蔡绍滨, 等. 分子通信研究综述[J]. 通信学报, 2013, 34(5): 152-167. |
LIZ P, ZHANGJ, CAIS B, et al. Review on molecular communication[J]. Journal on Communications, 2013, 34(5): 152-167. (in Chinese) | |
24 | KUSCUM, DINCE, BILGINB A, et al. Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques[J]. Proceedings of the IEEE, 2019, 107(7): 1302-1341. |
25 | JAMALIV, AHMADZADEHA, WICKEW, et al. Channel modeling for diffusive molecular communication—A tutorial review[J]. Proceedings of the IEEE, 2019, 107(7): 1256-1301. |
26 | BALASUBRAMANIAMS, BEN-YEHUDAS, PAUTOTS, et al. A review of experimental opportunities for molecular communication[J]. Nano Communication Networks, 2013, 4(2): 43-52. |
27 | MURDANS. Electro-responsive drug delivery from hydrogels[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2003, 92(1/2): 1-17. |
28 | FABBROA, SCAINID, LEÓNV, et al. Graphene-based interfaces do not alter target nerve cells[J]. ACS Nano, 2016, 10(1): 615-623. |
29 | WALKERM I, UBYCHK, SARASWATV, et al. Extrinsic cation selectivity of 2D membranes[J]. ACS Nano, 2017, 11(2): 1340-1346. |
30 | JONESP D, MARTINS. Can nanofluidic chemical release enable fast, high resolution neurotransmitter-based neurostimulation? [J]. Frontiers in Neuroscience, 2016, 10: 138. |
31 | FUERSTMANM J, GARSTECKIP, WHITESIDESG M. Coding/decoding and reversibility of droplet trains in microfluidic networks[J]. Science, 2007, 315(5813): 828-832. |
32 | PETERSONS L, ANTHONYM, GOURLEYP L, et al. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells[J]. Journal of Biomedical Materials Research. Part A, 2005, 72(1): 10-18. |
33 | COBOL C, AKYILDIZI F. Bacteria-based communication in nanonetworks[J]. Nano Communication Networks, 2010, 1(4): 244-256. |
34 | LIO'P, BALASUBRAMANIAMS. Opportunistic routing through conjugation in bacteria communication nanonetwork[J]. Nano Communication Networks, 2012, 3(1): 36-45. |
35 | SUGRAESA M, AKYILDIZI. Capacity and Delay of Bacteria-Based Communication in Nanonetworks[D]. Barcelona: Universitat Politècnica de Catalunya, 2012. |
36 | WALSHF, BALASUBRAMANIAMS, BOTVICHD, et al. Synthetic protocols for nano sensor transmitting platforms using enzyme and DNA based computing[J]. Nano Communication Networks, 2010, 1(1): 50-62. |
37 | WALSHF, BALASUBRAMANIAMS. Reliability of multi-path virus nanonetworks[C]//2013 IEEE International Conference on Communications Workshops. Piscataway: IEEE, 2013: 824-828. |
38 | WALSHF, BALASUBRAMANIAMS. Reliability and delay analysis of multihop virus-based nanonetworks[J]. IEEE Transactions on Nanotechnology, 2013, 12(5): 674-684. |
39 | SANKARANS, BECKERJ, WITTMANNC, et al. Optoregulated drug release from an engineered living hydrogel[J].Small, 2019, 15(5): e1804717. |
40 | LINDEMANNS R, BERNSTEINH C, SONGH S, et al. Engineering microbial consortia for controllable outputs[J]. The ISME Journal, 2016, 10(9): 2077-2084. |
41 | KUSCUM, AKANO B. On the physical design of molecular communication receiver based on nanoscale biosensors[J]. IEEE Sensors Journal, 2016, 16(8): 2228-2243. |
42 | KUSCUM, AKANO B. Modeling and analysis of SiNW FET-based molecular communication receiver[J]. IEEE Transactions on Communications, 2016, 64(9): 3708-3721. |
43 | UNLUTURKB D, BICENA, AKYILDIZI F. Genetically engineered bacteria-based BioTransceivers for molecular communication[J]. IEEE Transactions on Communications, 2015, 63(4): 1271-1281. |
44 | PIEROBONM, AKYILDIZI F. Noise analysis in ligand-binding reception for molecular communication in nanonetworks[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4168-4182. |
45 | CHOUC T. A Markovian approach to the optimal demodulation of diffusion-based molecular communication networks[J]. IEEE Transactions on Communications, 2015, 63(10): 3728-3743. |
46 | FARSADN, MURINY, ECKFORDA, et al. On the capacity of diffusion-based molecular timing channels[C]//2016 IEEE International Symposium on Information Theory. Barcelona: IEEE, 2016: 1023-1027. |
47 | YILMAZH B, CHAEC B. Arrival modelling for molecular communication via diffusion[J]. Electronics Letters, 2014, 50(23): 1667-1669. |
48 | NAKANOT, SUDAT, KOUJINT, et al. Molecular communication through gap junction channels[J]. Transactions on Computational Systems Biology X, 2008, 5410: 81-99. |
49 | KILINCD, AKANO B. An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes[J]. IEEE Transactions on Nanotechnology, 2013, 12(2): 129-136. |
50 | BICENA O, AKYILDIZI F, BALASUBRAMANIAMS, et al. Linear channel modeling and error analysis for intra/inter-cellular Ca2+ molecular communication[J]. IEEE Transactions on Nanobioscience, 2016, 15(5): 488-498. |
51 | MOOREM, ENOMOTOA, NAKANOT, et al. A design of a molecular communication system for nanomachines using molecular motors[C]//Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops. Pisa: IEEE, 2006: 6pp.-559. |
52 | GREGORIM, AKYILDIZI F. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(4): 612-619. |
53 | GREGORIM, LLATSERI, CABELLOS-APARICIOA, et al. Physical channel characterization for medium-range nanonetworks using flagellated bacteria[J]. Computer Networks, 2011, 55(3): 779-791. |
54 | MALLIKR, GROSSS P. Molecular motors: Strategies to get along[J]. Current Biology: CB, 2004, 14(22): R971-R982. |
55 | NAKANOT, SUDAT, MOOREM, et al. Molecular communication for nanomachines using intercellular calcium signaling[C]//5th IEEE Conference on Nanotechnology. Nagoya: IEEE, 2005: 478-481. |
56 | KURAN, TUGCU, EDIS. Calcium signaling: Overview and research directions of a molecular communication paradigm[J]. IEEE Wireless Communications, 2012, 19(5): 20-27. |
57 | HEP, PIB W, LIUQ. Calcium signaling in mobile molecular communication networks: From a multimedia view[J]. IEEE Access, 2019, 7: 164825-164834. |
58 | HEP, NAKANOT, MAOY, et al. Channel switching in molecular communication networks through calcium signaling[C]//2017 IEEE Wireless Communications and Networking Conference(WCNC). San Francisco: IEEE,2017: 1-6. |
59 | MALAKD, AKANO B. Molecular communication nanonetworks inside human body[J]. Nano Communication Networks, 2012, 3(1): 19-35. |
60 | YILMAZH B, HERENA C, TUGCUT, et al. Three-dimensional channel characteristics for molecular communications with an absorbing receiver[J]. IEEE Communications Letters, 2014, 18(6): 929-932. |
61 | WYATTT D. Pheromones and Animal Behaviour: Communication by Smell and Taste[M]. Cambridge: Cambridge University Press, 2003. |
62 | PARCERISA GINÉL, AKYILDIZI F. Molecular communication options for long range nanonetworks[J]. Computer Networks, 2009, 53(16): 2753-2766. |
63 | UNLUTURKB D, AKYILDIZI F. An end-to-end model of plant pheromone channel for long range molecular communication[J]. IEEE Transactions on Nanobioscience, 2017, 16(1): 11-20. |
64 | KURANM Ş, YILMAZH B, TUGCUT, et al. Interference effects on modulation techniques in diffusion based nanonetworks[J]. Nano Communication Networks, 2012, 3(1): 65-73. |
65 | CHOK, WANGX, NIES M, et al. Therapeutic nanoparticles for drug delivery in cancer[J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2008, 14(5): 1310-1316. |
66 | CHOURASIAM K, JAINS K. Pharmaceutical approaches to colon targeted drug delivery systems[J]. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 2003, 6(1): 33-66. |
67 | LEARYS P, LIUC Y, APUZZOM L J. Toward the emergence of nanoneurosurgery: Part III: Nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery[J]. Neurosurgery, 2006, 58(6): 1009-1026. |
68 | COUVREURP, VAUTHIERC. Nanotechnology: Intelligent design to treat complex disease[J].Pharmaceutical Research, 2006, 23(7): 1417-1450. |
69 | CAVALCANTIA. Nanorobot for brain aneurysm[J]. The International Journal of Robotics Research, 2009, 28(4): 558-570. |
70 | PATELG M, PATELG C, PATELR B, et al. Nanorobot: A versatile tool in nanomedicine[J]. Journal of Drug Targeting, 2006, 14(2): 63-67. |
71 | FEMMINELLAM, REALIG, VASILAKOS|A V. A molecular communications model for drug delivery[J]. IEEE Transactions on NanoBioscience, 2015, 14(8): 935-945. |
72 | CHUDE-OKONKWOU A K, MALEKIANR, MAHARAJB T S. Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes[J]. IEEE Transactions on Nanobioscience, 2016, 15(3): 230-245. |
73 | CHAHIBIY, AKYILDIZI F, BALASUBRAMANIAMS, et al. Molecular communication modeling of antibody-mediated drug delivery systems[J]. IEEE Transactions on Bio-Medical Engineering, 2015, 62(7): 1683-1695. |
74 | CHUDE-OKONKWOU A K. Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery[C]//2014 IEEE Global Communications Conference. Austin: IEEE, 2014: 2826-2831. |
75 | CHAHIBIY, PIEROBONM, SONGS O, et al. A molecular communication system model for particulate drug delivery systems[J]. IEEE Transactions on Bio-Medical Engineering, 2013, 60(12): 3468-3483. |
76 | FREITASR AJr. Pharmacytes: An ideal vehicle for targeted drug delivery[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(9/10): 2769-2775. |
77 | CAOT N, AHMADZADEHA, JAMALIV, et al. Diffusive mobile MC for controlled-release drug delivery with absorbing receiver[C]//2019 IEEE International Conference on Communications(ICC). Shanghai: IEEE, 2019: 1-7. |
78 | SALEHIS, MOAYEDIANN S, HAGHJOOY JAVANMARDS, et al. Lifetime improvement of a multiple transmitter local drug delivery system based on diffusive molecular communication[J]. IEEE Transactions on Nanobioscience, 2018, 17(3): 352-360. |
79 | SHARIFIN, ZHOUY, HOLMESG, et al. Overcoming channel uncertainties in touchable molecular communication for direct-drug-targeting-assisted immuno-chemotherapy[J]. IEEE Transactions on Nanobioscience, 2020, 19(2): 249-258. |
80 | SUNY, HSIANGY, CHENY F, et al. A cooperative molecular communication for targeted drug delivery[C]//International Conference on Bio-inspired Information and Communication Technologies. Cham: Springer, 2020: 16-26. |
81 | ATAKANB, AKANO B, BALASUBRAMANIAMS. Body area nanonetworks with molecular communications in nanomedicine[J]. IEEE Communications Magazine, 2012, 50(1): 28-34. |
82 | LLATSERI, ALARCÓNE, PIEROBONYM. Diffusion-based channel characterization in molecular nanonetworks[C]//2011 IEEE Conference on Computer Communications Workshops. Shanghai: IEEE, 2011: 467-472. |
83 | PIEROBONM, AKYILDIZI F. Information capacity of diffusion-based molecular communication in nanonetworks[C]//2011 Proceedings IEEE INFOCOM. Shanghai: IEEE, 2011: 506-510. |
84 | ARIFLERD. Capacity analysis of a diffusion-based short-range molecular nano-communication channel[J]. Computer Networks, 2011, 55(6): 1426-1434. |
85 | LLATSERI, PASCUALI, GARRALDAN, et al. Exploring the physical channel of diffusion-based molecular communication by simulation[C]//2011 IEEE Global Telecommunications Conference - GLOBECOM. Houston: IEEE, 2011: 1-5. |
86 | KADLOORS, ADVER S, ECKFORDA W. Molecular communication using Brownian motion with drift[J]. IEEE Transactions on Nanobioscience, 2012, 11(2): 89-99. |
87 | SRINIVASK V, ECKFORDA W, ADVER S. Molecular communication in fluid media: The additive inverse Gaussian noise channel[J]. IEEE Transactions on Information Theory, 2012, 58(7): 4678-4692. |
88 | NAKANOT, OKAIEY, VASILAKOSA V. Transmission rate control for molecular communication among biological nanomachines[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(12): 835-846. |
89 | NOELA, CHEUNGK C, SCHOBERR. Improving receiver performance of diffusive molecular communication with enzymes[J]. IEEE Transactions on Nanobioscience, 2014, 13(1): 31-43. |
90 | ANDREWSS S, BRAYD. Stochastic simulation of chemical reactions with spatial resolution and single molecule detail[J]. Physical Biology, 2004, 1(3/4): 137-151. |
91 | NELSONP. Biological Physics: Energy, Information, Life[M]. New York: W.H.Freeman & Co Ltd, 2003 |
92 | AHMADZADEHA, JAMALIV, SCHOBERR. Stochastic channel modeling for diffusive mobile molecular communication systems[J]. IEEE Transactions on Communications, 2018, 66(12): 6205-6220. |
93 | FREITASR A. Nanomedicine, Volume I: Basic Capabilities[M]. Boca Raton: CRC Press, 1999. |
94 | MENGL S, YEHP C, CHENK C, et al. On receiver design for diffusion-based molecular communication[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 6032-6044. |
95 | MAHFUZM U, MAKRAKISD, MOUFTAHH T. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication[J]. IEEE Transactions on Nanobioscience, 2014, 13(3): 208-222. |
96 | NOELA, CHEUNGK C, SCHOBERR. Using dimensional analysis to assess scalability and accuracy in molecular communication[C]//2013 IEEE International Conference on Communications Workshops(ICC). Budapest: IEEE, ,2013: 818-823. |
97 | PIEROBONM, AKYILDIZI F. A physical end-to-end model for molecular communication in nanonetworks[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(4): 602-611. |
98 | KILINCD, AKANO B. Receiver design for molecular communication[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(12): 705-714. |
99 | GUOW S, ASYHARIT, FARSADN, et al. Molecular communications: Channel model and physical layer techniques[J]. IEEE Wireless Communications, 2016, 23(4): 120-127. |
100 | HUNDSDORFERW H, VERWERJ G. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations[M]. Berlin: Springer, 2003 |
101 | CSANADYG T. Turbulent Diffusion in the Environment[M]. Dordrecht: Springer Netherlands, 1973. |
102 | JAVANDELI, DOUGHTYC, TSANGC. Groundwater Transport: Handbook of Mathematical Models[M]. New York: Environmental Science, 1984. |
103 | HERENA C, YILMAZH B, CHAEC-B, et al. Effect of degradation in molecular communication: Impairment or enhancement?[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2015, 1(2): 217-229. |
104 | FARSADN, PAND, GOLDSMITHA. A novel experimental platform for in-vessel multi-chemical molecular communications[C]//GLOBECOM 2017 - 2017 IEEE Global Communications Conference. Singapore City: IEEE, 2017: 1-6. |
105 | CHOY J, YILMAZH B, GUOW, et al. Effective enzyme deployment for degradation of interference molecules in molecular communication[C]//2017 IEEE Wireless Communications and Networking Conference(WCNC). San Francisco: IEEE, 2017: 1-6. |
106 | CHANGR. Physical Chemistry for the Biosciences[M]. Melville: University Science Books, 2005. |
107 | AHMADZADEHA, ARJMANDIH, BURKOVSKIA, et al. Comprehensive reactive receiver modeling for diffusive molecular communication systems: Reversible binding, molecule degradation, and finite number of receptors[J]. IEEE Transactions on Nanobioscience, 2016, 15(7): 713-727. |
108 | DEBNATHL. Nonlinear Partial Differential Equations for Scientists and Engineers[M]. Berlin: Springer Verlag, 2004. |
109 | NOELA, CHEUNGK C, SCHOBERR. A unifying model for external noise sources and ISI in diffusive molecular communication[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(12): 2330-2343. |
110 | TURANM, KURANM, YILMAZH B, et al. Channel model of molecular communication via diffusion in a vessel-like environment considering a partially covering receiver[C]//2018 IEEE International Black Sea Conference on Communications and Networking(BlackSeaCom). Batumi: IEEE, 2018: 1-5. |
111 | ZOOFAGHARIM, ARJMANDIH. Diffusive molecular communication in biological cylindrical environment[J]. IEEE Transactions on Nanobioscience, 2019, 18(1): 74-83. |
112 | DINCF, AKDENIZB C, PUSANEA E, et al. A general analytical approximation to impulse response of 3-D microfluidic channels in molecular communication[J]. IEEE Transactions on Nanobioscience, 2019, 18(3): 396-403. |
113 | SCHAFERM, WICKEW, RABENSTEINR, et al. Analytical models for particle diffusion and flow in a horizontal cylinder with a vertical force[C]//2019 IEEE International Conference on Communications(ICC). Shanghai: IEEE, 2019: 1-7. |
114 | BAOX, ZHUY F, ZHANGW C. Channel characteristics for molecular communication via diffusion with a spherical boundary[J]. IEEE Wireless Communications Letters, 2019, 8(3): 957-960. |
115 | ARJMANDIH, ZOOFAGHARIM, NOELA. Diffusive molecular communication in a biological spherical environment with partially absorbing boundary[J]. IEEE Transactions on Communications, 2019, 67(10): 6858-6867. |
[1] | 李钦, 刘伟, 牛朝阳, 宝音图, 惠周勃. 低信噪比下基于分裂EfficientNet网络的雷达信号调制方式识别[J]. 电子学报, 2023, 51(3): 675-686. |
[2] | 贺军义, 吴梦翔, 宋成, 张敏, 张俊楠. 双目视觉辅助PDR的组合导航定位方法[J]. 电子学报, 2023, 51(3): 736-745. |
[3] | 王桐, 李必信, 王东东. 一种基于MAAT两步匹配的架构多层次变更检测方法[J]. 电子学报, 2023, 51(3): 694-700. |
[4] | 王俊杰, 冯德军, 隋冉, 邢世其, 肖顺平. 基于非周期PSS的SAR目标特征操控方法研究[J]. 电子学报, 2023, 51(3): 564-572. |
[5] | 张文旭, 崔鑫磊, 陆满君. 一种基于MMF-FRM的低复杂度信道化接收机结构[J]. 电子学报, 2023, 51(3): 720-727. |
[6] | 唐维伟, 钟胜, 卢金仪, 颜露新, 谭富中, 邹旭, 徐文辉. 基于FPGA的Skynet网络结构优化及高时效实现[J]. 电子学报, 2023, 51(2): 314-323. |
[7] | 杨利平, 侯振威, 辜小花, 郝峻永. 弱标签声音事件检测的空间-通道特征表征与自注意池化[J]. 电子学报, 2023, 51(2): 297-306. |
[8] | 皮德常, 吴致远, 曹建军. 基于知识图谱表示学习的谣言早期检测方法[J]. 电子学报, 2023, 51(2): 385-395. |
[9] | 张志涵, 朱凤增, 彭力. 基于自适应事件触发的跳变系统故障检测滤波[J]. 电子学报, 2023, 51(2): 499-507. |
[10] | 柳长源, 张玉亮, 毕晓君. 基于多阶段提议稀疏区域卷积网络的城市交通目标检测[J]. 电子学报, 2023, 51(1): 26-31. |
[11] | 田晖, 严艳, 汤莉莉, 吴俊彦, 王慧东, 全韩彧. 基于分数基音延迟动态搜索的语音隐写算法[J]. 电子学报, 2023, 51(1): 67-75. |
[12] | 王俊嘉, 房崇宝, Chen Lawrence R. 硅基亚波长光栅波导在微波光子学中的应用[J]. 电子学报, 2022, 50(9): 2233-2241. |
[13] | 徐明, 胡沐宇. 窃听信道下基于双分簇技术的信源安全有损传输[J]. 电子学报, 2022, 50(9): 2196-2204. |
[14] | 游波, 蔡志明. 一种水声瞬态信号的下降沿检测方法[J]. 电子学报, 2022, 50(9): 2215-2221. |
[15] | 邢莉娟, 李卓, 张泽栋. 水声通信中极化码的应用研究[J]. 电子学报, 2022, 50(9): 2096-2101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||