1 |
LIY J, ZHUM T, MAY H, et al. Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1343-1353.
|
2 |
FANGY, BID P, PANJ F, et al. Multi-function radar behavior state detection algorithm based on Bayesian criterion[C]//2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference(IAEAC). Chengdu: IEEE, 2019: 213-217.
|
3 |
TARTAKOVSKYA, NIKIFOROVI, BASSEVILLEM. Sequential Analysis: Hypothesis Testing and Changepoint Detection[M]. New York: Chapman & Hall/CRC, 2014.
|
4 |
POORH V, HADJILIADISO. Quickest Detection[M]. Cambridge: Cambridge University Press, 2008.
|
5 |
VEERAVALLIV V, BANERJEET. Quickest change detection[M]//Academic Press Library in Signal Processing. Amsterdam: Elsevier, 2014: 209-255.
|
6 |
CHENY C, BANERJEET, DOMINGUEZ-GARCIAA D, et al. Quickest line outage detection and identification[J]. IEEE Transactions on Power Systems, 2016, 31(1): 749-758.
|
7 |
RAGHAVANV, VEERAVALLIV V. Quickest change detection of a Markov process across a sensor array[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1961-1981.
|
8 |
PEELL, CLAUSETA. Detecting change points in the large-scale structure of evolving networks[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. New York: ACM, 2015: 2914-2920.
|
9 |
AMORESED. Applying a change-point detection method on frequency-magnitude distributions[J]. Bulletin of the Seismological Society of America, 2007, 97(5): 1742-1749.
|
10 |
LEEK C, KRIEGMAND. Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 852-859.
|
11 |
LAIL F, FANY J, POORH V. Quickest detection in cognitive radio: A sequential change detection framework[C]//2008 IEEE Global Telecommunications Conference. New Orleans: IEEE, 2008: 1-5.
|
12 |
马爽, 柳征, 姜文利. 基于幅度变化点检测的多功能雷达脉冲列解析方法[J]. 电子学报, 2013, 41(7): 1436-1441.
|
|
MAS, LIUZ, JIANGW L. A method for multifunction radar pulse train analysis based on amplitude change point detection[J]. Acta Electronica Sinica, 2013, 41(7): 1436-1441. (in Chinese)
|
13 |
VISNEVSKIN A. Syntactic Modeling of Multi-Function Radars[D]. Hamilton: McMaster University, 2005.
|
14 |
VISNEVSKIN, KRISHNAMURTHYV, WANGA, et al. Syntactic modeling and signal processing of multifunction radars: A stochastic context-free grammar approach[J]. Proceedings of the IEEE, 2007, 95(5): 1000-1025.
|
15 |
WANGA, KRISHNAMURTHYV. Signal interpretation of multifunction radars: Modeling and statistical signal processing with stochastic context free grammar[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1106-1119.
|
16 |
OU J, CHENY G, ZHAOF, et al. Method for operating mode identification of multi-function radars based on predictive state representations[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 426-433.
|
17 |
刘海军, 樊昀, 李悦, 等. 多功能雷达建模中的雷达字提取技术研究[J]. 国防科技大学学报, 2010, 32(2): 91-96.
|
|
LIUH J, FANY, LIY, et al. Research on extracting of radar words in modeling of multi-function radar[J]. Journal of National University of Defense Technology, 2010, 32(2): 91-96. (in Chinese)
|
18 |
王勇军. 一种改进的事件驱动的MFR雷达字提取方法[J]. 现代雷达, 2019, 41(3): 17-20, 26.
|
|
WANGY J. Novel approach of radar word extraction for MFRs based on event-driven method[J]. Modern Radar, 2019, 41(3): 17-20, 26. (in Chinese)
|
19 |
代鹂鹏, 王布宏, 蔡斌, 等. 基于SCFG建模的多功能雷达状态估计算法[J]. 空军工程大学学报(自然科学版), 2014, 15(3): 24-28.
|
|
DAIL P, WANGB H, CAIB, et al. A method for states estimation of multi-function radar based on stochastic context free grammar[J]. Journal of Air Force Engineering University(Natural Science Edition), 2014, 15(3): 24-28. (in Chinese)
|
20 |
OU J, CHENY G, ZHAOF, et al. Novel approach for the recognition and prediction of multi-function radar behaviours based on predictive state representations[J]. Sensors(Basel, Switzerland), 2017, 17(3): 632.
|
21 |
APFELDS, CHARLISHA, Modelling ASCHEIDG., learning and prediction of complex radar emitter behaviour[C]//2019 18th IEEE International Conference on Machine Learning and Applications. Boca Raton: IEEE, 2019: 305-310.
|
22 |
ZHUM T, ZHANGZ W, LIC, et al. JMRPE-Net: Joint modulation recognition and parameter estimation of cognitive radar signals with a deep multitask network[J]. IET Radar, Sonar & Navigation, 2021, 15(11): 1508-1524.
|