1 |
刘建伟, 黎海恩, 等. 概率图模型的表示理论综述[J]. 电子学报, 2016, 44(5): 1219‐1226.
|
|
LIU Jian-wei, LI Hai-en, et al. A survey on the representation theory of probabilistic graphical models[J]. Acta Electronica Sinica, 2016, 44(5): 1219‐1226. (in Chinese)
|
2 |
SUNDARARAJAN P K. Improving the Performance and Understanding of the Expectation Maximization Algorithm: Evolutionary and Visualization Methods[D]. Pittsburgh, PA: Carnegie Mellon University, 2016.
|
3 |
张西宁, 雷威, 等. 采用自适应基因粒子群算法优化隐马尔科夫模型的方法及应用[J]. 西安交通大学学报, 2018, 52(8): 1‐8.
|
|
ZHANG Xining, LEI Wei, et al. Adaptive genetic particle swarm algorithm for optimization hidden Markov models with applications[J]. Journal of Xi'an Jiaotong University, 2018, 52(8): 1‐8. (in Chinese)
|
4 |
BENMACHICHE A, MAKHLOUF A, BOUHADADA T. Evolutionary learning of HMM with Gaussian mixture densities for automatic speech recognition[C]//Proceedings of the 9th International Conference on Information Systems and Technologies(ICIST). Cairo, Egypt: ACM, 2019: 1‐6.
|
5 |
MAKHLOUF A, LAZLI L, BENSAKER B. Evolutionary structure of hidden Markov models for audio-visual Arabic speech recognition[J]. International Journal of Signal and Imaging Systems Engineering, 2016, 9(1): 55‐66.
|
6 |
崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068‐3090.
|
|
CUI Jia-xu, YANG Bo. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068‐3090. (in Chinese)
|
7 |
杨扬. 基于最小描述长度的大规模图数据结构分析[D]. 合肥: 中国科学技术大学, 2018.
|
|
YANG Yang. Structure Analysis of Large Graph Data Based on Minimum Description Length[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
|
8 |
王为凯. 基于GMM-HMM的声学模型训练研究[D]. 广州: 华南理工大学, 2016.
|
|
WANG Weikai. Rearch of the GMM-HMM Based Acoustic Models[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
|
9 |
李航. 统计学习方法[M]. 北京:清华大学出版社, 2012: 181‐183.
|
10 |
AMSALU S B, HOMAIFAR A. Driver behavior modeling near intersections using hidden Markov model based on genetic algorithm[C]//IEEE International Conference on Intelligent Transportation Engineering(ICITE). Singapore: IEEE, 2016: 193‐200.
|
11 |
BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 627‐629.
|
12 |
LEHRMANN A M, GEHLER P V, NOWOZIN S. Efficient nonlinear markov models for human motion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus, OH, USA: IEEE, 2014: 1314‐1321.
|
13 |
LI Wanqing, ZHANG Zhengyou, LIU Zicheng. Action recognition based on a bag of 3D points[C]//Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition Workshops(CVPRW). San Francisco, CA, USA: IEEE, 2010: 9‐14.
|
14 |
SOSIAWAN A Y, NOORAENI R, SARI L K. Implementation of using HMM-GA in time series data[J]. Procedia Computer Science, 2021, 179: 713‐720.
|
15 |
BLEI D M, KUCUKELBIR A, MCAULIFFE J D. Variational inference: a review for statisticians[J]. Journal of the American Statistical Association, 2017, 112(518): 859‐877.
|