1 |
ABDEL-MONEIMM A, EL-SHAFAIW, ABDEL-SALAMN, et al. A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends[J]. International Journal of Communication Systems, 2021, 34(10): e4762-e4798.
|
2 |
李正权, 林媛, 李梦雅, 等. 基于判别式受限玻尔兹曼机的数字调制识别[J]. 通信学报, 2021, 42(2): 81-91.
|
|
LIZ Q, LINY, LIM Y, et al. Digital modulation recognition based on discriminative restricted Boltzmann machine[J]. Journal on Communications, 2021, 42(2): 81-91. (in Chinese)
|
3 |
SIMICM, STANKOVICM, ORLICV D. Automatic modulation classification of real signals in AWGN channel based on sixth-order cumulants[J]. Radioengineering, 2021, 30(1): 204-214.
|
4 |
SHIQ H, KARASAWAY. Automatic modulation identification based on the probability density function of signal phase[J]. IEEE Transactions on Communications, 2012, 60(4): 1033-1044.
|
5 |
孙姝君, 彭盛亮, 姚育东, 等. 基于深度学习的调制识别综述[J]. 电信科学, 2021, 37(5): 82-90.
|
|
SUNS J, PENGS L, YAOY D, et al. A survey of deep learning based modulation recognition[J]. Telecommunications Science, 2021, 37(5): 82-90. (in Chinese)
|
6 |
PENGS L, JIANGH Y, WANGH X, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727.
|
7 |
陈昌美, 李艳斌. 基于卷积神经网络的调制样式识别研究[J]. 信息技术, 2020, 44(1): 101-106.
|
|
CHENC M, LIY B. Research on modulation pattern recognition based on convolutional neural network[J]. Information Technology, 2020, 44(1): 101-106. (in Chinese)
|
8 |
许华, 苟泽中, 蒋磊, 等. 适用于样本分布差异的迁移学习调制识别算法[J]. 华中科技大学学报(自然科学版), 2021, 49(4): 127-132.
|
|
XUH, GOUZ Z, JIANGL, et al. Transfer learning modulation recognition algorithm for differences in sample distribution[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(4): 127-132. (in Chinese)
|
9 |
LIUK, GAOW J, HUANGQ H. Automatic modulation recognition based on a DCN-BiLSTM network[J]. Sensors, 2021, 21(5): 1577-1584.
|
10 |
AL-NUAIMID H, AKBARM F, SALMANL B, et al. AMC2N: automatic modulation classification using feature clustering-based two-lane capsule networks[J]. Electronics, 2021, 10(1): 76-108.
|
11 |
李东瑾, 杨瑞娟, 李晓柏, 等. 基于栈式稀疏降噪自编码网络的辐射源调制识别[J]. 电子学报, 2020, 48(6): 1198-1204.
|
|
LID J, YANGR J, LIX B, et al. Emitter signal modulation recognition based on stacked sparse denoising auto-encoders[J]. Acta Electronica Sinica, 2020, 48(6): 1198-1204. (in Chinese)
|
12 |
陈红, 蔡晓霞, 徐云, 等. 基于多重分形特征的通信调制方式识别研究[J]. 电子与信息学报, 2016, 38(4): 863-869.
|
|
CHENH, CAIX X, XUY, et al. Communication modulation recognition based on multi-fractal dimension characteristics[J]. Journal of Electronics & Information Technology, 2016, 38(4): 863-869. (in Chinese)
|
13 |
ZHAOC H, YANGW C. Modulation recognition of MFSK signals based on multifractal spectrum[J].Wireless Personal Communications, 2013, 72(4): 1903-1914.
|
14 |
杨伟超. Alpha稳定分布噪声下通信信号调制识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
|
|
YANGW C. Modulation Recognition for Communication Signals in the Alpha-Stable Distribution Noise[D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
|
15 |
ZHANGD M, WANGC, LIC Y, et al. Multi-fractal detrended fluctuation half-spectrum analysis of HRV[J]. The Journal of Engineering, 2019, 2019(22): 8315-8318.
|
16 |
王书豪, 阮怀林. 基于切片双谱多重分形特征的雷达信号识别算法[J]. 探测与控制学报, 2019, 41(5): 66-70.
|
|
WANGS H, RUANH L. A radar signal recognition method based on multi-fractal dimension characteristics of bispectrum diagonal slice[J]. Journal of Detection & Control, 2019, 41(5): 66-70. (in Chinese)
|
17 |
钟明寿, 龙源, 谢全民, 等. 基于分形盒维数和多重分形的爆破地震波信号分析[J]. 振动与冲击, 2010, 29(1): 7-11, 233.
|
|
ZHONGM S, LONGY, XIEQ M, et al. Signal analysis for blasting seismic wave based on fractal box-dimension and multi-fractal[J]. Journal of Vibration and Shock, 2010, 29(1): 7-11, 233. (in Chinese)
|
18 |
HEK M, ZHANGX Y, RENS Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
19 |
HEF X, LIUT L, TAOD C. Why ResNet works? Rresiduals generalize[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5349-5362.
|
20 |
BIN, CHENJ H, TANJ. The handwritten Chinese character recognition uses convolutional neural networks with the GoogLeNet[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(11): 1940016.
|
21 |
LIUZ H, WUJ Z, FUL S, et al. Improved kiwifruit detection using pre-trained VGG16 with RGB and NIR information fusion[J]. IEEE Access, 2019, 8: 2327-2336.
|
22 |
ZHANGW, LIJ J, QIUX Y. SAR image super-resolution using deep residual SqueezeNet[C]//AIIPCC'19: Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. Sanya: ACM, 2019: 1-5.
|