1 |
LIH, ZHOUS, XIEP, et al. Waveform optimization for multiple beam communications under radar constant modulus constraints[C]//2021 IEEE Wireless Communications and Networking Conference(WCNC). Nanjing: IEEE, 2021: 1‐6.
|
2 |
WENC, PENGJ, ZHOUY, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154‐4166.
|
3 |
HAMZAS A, AMINM G. Sparse array design utilizing matrix completion[C]//2019 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2019: 1207‐1211.
|
4 |
HAMZAS A, ZHAIW, WANGX, et al. Sparse array transceiver design for enhanced adaptive beamforming in MIMO radar[C]//ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021: 4410‐4414.
|
5 |
JOSHIS, BOYDS. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451‐462.
|
6 |
TOHIDIE, COUTINOM, CHEPURIS P, et al. Sparse antenna and pulse placement for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 579‐593.
|
7 |
WANGX, ABOUTANIOSE, AMINM. Reduced-rank STAP for slow-moving target detection by antenna-pulse selection[J]. IEEE Signal Processing Letter, 2015, 22(8): 1156‐1160.
|
8 |
WANGX, ABOUTANIOSE, AMINM. Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 726‐734.
|
9 |
TANGB, TANGJ. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707‐4722.
|
10 |
AUBRYA, MAIOA D, NAGHSHM M. Optimizing radar waveform and doppler filter bank via generalized fractional programming[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1387‐1399.
|
11 |
LIJ, LIAOG, HUANGY, et al. MIMO-STAP based cognitive design of transmitted waveforms and receive filters for clutter suppression[C]//2018 IEEE Radar Conference (RadarConf18). Oklahoma: IEEE, 2018: 1439‐1444.
|
12 |
WANGY, LIUH, LUOZ. Iterative design of MIMO radar transmit waveforms and receive filter bank[C]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: IEEE, 2010: 2770‐2773.
|
13 |
WANGH, PEIB, WANGZ, et al. Robust waveform optimization for MIMO radar to improve the worst-case detection performance[C]//2014 IEEE Radar Conference. Cincinnati: IEEE, 2014: 1098‐1101.
|
14 |
MAIOA D, NICOLAS D, HuangY, et al. Code design for radar STAP via optimization theory[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 679‐694.
|
15 |
CHENGZ, HEZ, ZHANGS, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912‐4923.
|
16 |
CUIG, YUX, CAROTENUTOV, et al. Space-time transmit code and receive filter design for collocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116‐1129.
|
17 |
STOICAP, SELENY. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1): 112‐114.
|
18 |
CAPONJ. High resolution frequency-wavenumber spectrum analysis[J]. IEEE Proceeding, 1969, 57(8): 1408‐1418.
|
19 |
WANGH. Robust Waveform optimization for MIMO-OFDM-based STAP in the presence of environmental uncertainty[J]. Circuits Syst Signal Processing:2019, 38(3): 1301‐1317.
|
20 |
STOICAP, LIJ, ZHUX, et al. On using a priori knowledge in space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2598‐2602.
|
21 |
TANGB, TANGJ, PENGY, et al. Estimation of transition range bin in clutter edge for space time adaptive processing[C]//Proceedings of 2011 IEEE CIE International Conference on Radar. Chengdu: IEEE, 2011, 688‐691.
|
22 |
WANGX, WANGH, PEIB. Robust waveform design for MIMO-OFDM-STAP with imperfect clutter prior knowledge[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). Chennai: IEEE, 2016: 1849‐1852.
|
23 |
张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2011: 271‐278.
|
|
ZHANGX D. Matrix Analysis and Application[M]. Beijing: Tsinghua University Press, 2011: 271‐278. (in Chinese)
|
24 |
LIW, ZHANGH, LIANGX. A sequential convex approximation algorithm for portfolio optimization model[J]. Journal of Dalian University of Technology, 2017, 57(3): 321‐326.
|
25 |
ADVE, RAVIRAJS. Design of multiple near-orthogonal spectrally-compliant waveforms via alternating successive convex approximations and projections[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 781‐788.
|
26 |
AUBRYA, MAIOA D, PIEZZOM, et al. Cognitive design of the transmitted phase code and receive filter in reverberating environment[C]//2012 International Waveform Diversity & Design Conference(WDD). Kauai: IEEE, 2012: 085‐090.
|
27 |
IMANIS, NAYEBIM M, GHORASHIS A. Transmit signal design in collocated MIMO radar without covariance matrix optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2178‐2186.
|
28 |
WANGH, PEIB, BAIY. Robust waveform design for MIMO-STAP with imperfect clutter prior knowledge[C]//2014 IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC). Guilin: IEEE, 2014: 578‐581.
|
29 |
CUIG, LIH, RANGASWAMYM. Waveform design for MIMO radar with constant modulus and similarity constraints[C]//2014 IEEE Radar Conference. Cincinnati, OH: IEEE, 2014: 0354‐0359.
|
30 |
CONTINOM, CHEPURIS, LEUSG. Near-optimal greedy sensor selection for MVDR beamforming with modular budget constraint[C]//2017 25th European Signal Processing Conference(EUSIPCO). Kos: IEEE, 2017: 1981‐1985.
|