1 |
CALDERBANK A R, RAINS E M, SHOR P W, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369‑1387.
|
2 |
ASHIKHMIN A, KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065‑3072.
|
3 |
ALY S A, KLAPPENECKER A, SARVEPALLI P K. Primitive quantum BCH codes over finite fields[C]//2006 IEEE International Symposium on Information Theory. Seattle: IEEE, 2006: 1114‑1118.
|
4 |
ALY S A, KLAPPENECKER A, SARVEPALLI P K. On quantum and classical BCH codes[J]. IEEE Transactions on Information Theory, 2007, 53(3): 1183‑1188.
|
5 |
GUARDIA G G L. Constructions of new families of nonbinary quantum codes[J]. Physical Review A, 2009, 80(4): 042331.
|
6 |
ZHANG M, LI Z, XING L J, et al. Construction of some new quantum BCH codes[J]. IEEE Access, 2018, 6: 36122‑36131.
|
7 |
KAI X S, LI P, ZHU S X. Construction of quantum negacyclic BCH codes[J]. International Journal of Quantum Information, 2018, 16(7): 1850059.
|
8 |
WANG J L, LI R H, Ma Y N, et al. New quantum BCH codes of length n = 2 ( q 4 - 1 ) [J]. Procedia Computer Science, 2019, 154: 677‑685.
|
9 |
LI F W, SUN X M. The Hermitian dual containing non-primitive BCH codes[J]. IEEE Communications Letters, 2020, 25(2): 379‑382.
|
10 |
ZHANG H, ZHU S X. New quantum BCH codes of length n = r ( q 2 - 1 ) [J]. International Journal of Theoretical Physics, 2021, 60(1): 172‑184.
|
11 |
SUN Z H, ZHU S X, WANG L Q. A class of constacyclic BCH codes[J]. Cryptography and Communications, 2019, 12(2): 265‑284.
|
12 |
TANG N Q, LI Z, XING L J, et al. Some improved constructions for nonbinary quantum BCH codes[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102A(1): 303‑306.
|
13 |
GUO G M, LI R H, LIU Y, et al. A family of negacyclic BCH codes of length n = ( q 2 m - 1 ) / 2 [J]. Cryptography and Communications, 2020, 12(2): 187‑203.
|
14 |
ZHAO X B, LI X P, WANG Q, et al. Hermitian dual-containing constacyclic BCH codes and related quantum codes of length n = ( q 2 m - 1 ) / ( q + 1 ) [EB/OL]. [2020-07-27]. .
|
15 |
WANG J, LI R H, LIU Y, et al. Some negacyclic BCH codes and quantum codes[J]. Quantum Information Processing, 2020, 19(2): 74.
|
16 |
SONG H, LI R H, WANG J L, et al. Two families of BCH codes and new quantum codes[J]. Quantum Information Processing, 2018, 17(10): 270.
|
17 |
MACWILLIAMS F J, SLOANE N J A. The Theory of Error -Correcting Codes[M]. The Netherlands: North-Holland Publishing Company, 1977.
|