1 |
LIUD X, GUX X, BAKSC W, et al. Antenna-in-package design considerations for ka-band 5G communication applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6372-6379.
|
2 |
ZHANGY P, LIUD X. Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 2830-2841.
|
3 |
HEX B, HUBINGT H. A closed-form expression for estimating the maximum radiated emissions from a heatsink on a printed circuit board[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(1): 205-211.
|
4 |
HEX B, HUBINGT H. Mitigation of unintentional radiated emissions from tall VLSI heatsinks using ground posts[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1271-1276.
|
5 |
SHENG Y, YANGS, SUNJ D, et al. Maximum radiated emissions evaluation for the heatsink/IC structure using the measured near electrical field[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(5): 1408-1414.
|
6 |
MOONGILAND. Radiated emissions from proximity coupled oversized heat-sinks[C]//2007 IEEE International Symposium on Electromagnetic Compatibility. Honolulu: IEEE, 2007: 1-6.
|
7 |
JINH, ZHANGL, YANGX L, et al. A novel heatsink with mushroom-type EBG structure for EMI radiation suppression[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility. Singapore: IEEE, 2018: 772-775.
|
8 |
CHIKANDOE, CONNORS, ARCHAMBEAULTB. Reduction of heatsink emissions by application of lossy materials[C]//2010 IEEE International Symposium on Electromagnetic Compatibility. Fort Lauderdale: IEEE, 2010: 239-243.
|
9 |
COVERTL, LINJ. Simulation and measurement of a heatsink antenna: A dual-function structure[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(4): 1342-1349.
|
10 |
COVERTL, LINJ, JANNINGD, et al. Dual-function 3-D heatsink antenna for high-density 3-D integration[C]//2007 IEEE International Workshop on Radio-Frequency Integration Technology. Singapore: IEEE, 2007: 26-29.
|
11 |
COVERTL, LINJ, JANNINGD, et al. 5.8 GHz orientation-specific extruded-fin heatsink antennas for 3D RF system integration[J]. Microwave and Optical Technology Letters, 2008, 50(7): 1826-1831.
|
12 |
CASANOVAJ J, TAYLORJ A, LINJ. Design of a 3-D fractal heatsink antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 1061-1064.
|
13 |
BAKYTBEKOVA, IMANZ, SHAMIMA. 3D printed bifunctional triple-band heatsink antenna for RF and thermal energy harvesting[C]//2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. Montreal: IEEE, 2020: 1563-1564.
|
14 |
GEJ Q, WANGG A. A heatsink integrated antenna with controllable electromagnetic and thermal performance[C]//2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. Montreal: IEEE, 2020: 419-420.
|
15 |
ALNUKARIA, GUILLEMETP, SCUDELLERY, et al. Active heatsink antenna for radio-frequency transmitter[J]. IEEE Transactions on Advanced Packaging, 2010, 33(1): 139-146.
|
16 |
ALNUKARIA, MAHEY, TOUTAINS, et al. Microstrip heatsink antenna cooled with sapphire layer for integrated RF transmitters[C]//2012 6th European Conference on Antennas and Propagation(EUCAP). Prague: IEEE, 2012: 1263-1266.
|
17 |
DINISH, FERNANDESJ, MENDESP M. Slot antenna design for a wirelessly powered implantable microcooler for neuronal applications[C]//2017 11th European Conference on Antennas and Propagation(EUCAP). Paris: IEEE, 2017: 480-484.
|
18 |
YINY S, ZHANGZ, KANART, et al. A 24-29.5 GHz 256-element 5G phased-array with 65.5 dBm peak EIRP and 256-QAM modulation[C]//2020 IEEE/MTT-S International Microwave Symposium(IMS). Los Angeles: IEEE, 2020: 687-690.
|
19 |
PARKH C, KANGD, LEES M, et al. 4.1 A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications[C]//2020 IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 2020: 76-78.
|
20 |
GUX X, LIUD X, BAKSC, et al. Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2975-2984.
|
21 |
DUNWORTHJ D, HOMAYOUNA, KUB H, et al. A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment[C]//2018 IEEE International Solid - State Circuits Conference. San Francisco: IEEE, 2018: 70-72.
|
22 |
ZHANGY P, MAOJ F. An overview of the development of antenna-in-package technology for highly integrated wireless devices[J]. Proceedings of the IEEE, 2019, 107(11): 2265-2280.
|
23 |
LIY J, WANGC, GUOY X. A ka-band wideband dual-polarized magnetoelectric dipole antenna array on LTCC[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4985-4990.
|
24 |
HEQ Q, DINGS, XINGC, et al. Research on structurally integrated phased array for wireless communications[J]. IEEE Access, 2020, 8: 52359-52369.
|
25 |
ZHOUJ Z, YINL M, KANGL, et al. Joint design and experimental tests of highly integrated phased-array antenna with microchannel heat sinks[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(11): 2370-2374.
|
26 |
ASLANY, PUSKELYJ, JANSSENJ H J, et al. Thermal-aware synthesis of 5G base station antenna arrays: An overview and a sparsity-based approach[J]. IEEE Access, 2018, 6: 58868-58882.
|
27 |
PARKJ, CHOID, HONGW. Millimeter-wave phased-array antenna-in-package(AiP) using stamped metal process for enhanced heat dissipation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(11): 2355-2359.
|
28 |
QIANJ W, TANGM, ZHANGY P, et al. Heatsink antenna array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7664-7669.
|
29 |
JINH Y, CHEW Q, CHINK S, et al. 60-GHz LTCC differential-fed patch antenna array with high gain by using soft-surface structures[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 206-216.
|
30 |
ZHOUL, TANGM, QIANJ W, et al. Vivaldi antenna array with heat dissipation enhancement for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 288-295.
|