1 |
WANGC X, HAIDERF, GAOX Q, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014, 52(2): 122-130.
|
2 |
AGIWALM, ROYA, SAXENAN. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617-1655.
|
3 |
YAOJ P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
|
4 |
MARTIJ, CAPMANYJ. Microwave photonics and radio-over-fiber research[J]. IEEE Microwave Magazine, 2009, 10(4): 96-105.
|
5 |
杨海林, 刘丽娟, 彭迪, 等. 光纤信能共传技术研究进展[J]. 光学学报, 2021, 41(11): 1100001.
|
|
YANGH L, LIUL J, PENGD, et al. Research progress of power-over-fiber technique applied to radio-over-fiber systems[J]. Acta Optica Sinica, 2021, 41(11): 1100001. (in Chinese)
|
6 |
DELOACHB C, MILLERR C, KAUFMANS. Sound alerter powered over an optical fiber[J]. The Bell System Technical Journal, 1978, 57(9): 3309-3316.
|
7 |
MILLERR C, LAWRYR B. Optically powered speech communication over a fiber lightguide[J]. Bell System Technical Journal, 1979, 58(7): 1735-1741.
|
8 |
TETSUYAM, KATSUYASUK, NOBUON, et al. Novel radio on fiber access eliminating external electric power supply at base station[J]. Acta Optica Sinica, 2003, 23(S1): 611-612.
|
9 |
WAKED, NKANSAHA, GOMESN J, et al. Optically powered remote units for radio-over-fiber systems[J]. Journal of Lightwave Technology, 2008, 26(15): 2484-2491.
|
10 |
LETHIENC, WAKED, VERBEKEB, et al. Energy-autonomous picocell remote antenna unit for radio-over-fiber system using the multiservices concept[J]. IEEE Photonics Technology Letters, 2012, 24(8): 649-651.
|
11 |
MATSUURAM, FURUGORIH, SATOJ. 60 W power-over-fiber feed using double-clad fibers for radio-over-fiber systems with optically powered remote antenna units[J]. Optics Letters, 2015, 40(23): 5598-5601.
|
12 |
MATSUURAM, SATOJ. Bidirectional radio-over-fiber systems using double-clad fibers for optically powered remote antenna units[J]. IEEE Photonics Journal, 2015, 7(1): 1-9.
|
13 |
RADDATZL, WHITEI H, CUNNINGHAMD G, et al. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links[J]. Journal of Lightwave Technology, 1998, 16(3): 324-331.
|
14 |
SIMD H, TAKUSHIMAY, CHUNGY C. High-speed multimode fiber transmission by using mode-field matched center-launching technique[J]. Journal of Lightwave Technology, 2009, 27(8): 1018-1026.
|
15 |
KUBOKIH, MATSUURAM. Optically powered radio-over-fiber system based on center- and offset-launching techniques using a conventional multimode fiber[J]. Optics Letters, 2018, 43(5): 1067-1070.
|
16 |
MATSUURAM, TAJIMAN, NOMOTOH, et al. 150-W power-over-fiber using double-clad fibers[J]. Journal of Lightwave Technology, 2019, 38(2): 401-408.
|
17 |
UMEZAWAT, DATP T, KASHIMAK, et al. 100-GHz radio and power over fiber transmission through multicore fiber using optical-to-radio converter[J]. Journal of Lightwave Technology, 2018, 36(2): 617-623.
|
18 |
AL-ZUBAIDIF M A, LÓPEZ CARDONAJ D, MONTEROD S, et al. Optically powered radio-over-fiber systems in support of 5G cellular networks and IoT[J]. Journal of Lightwave Technology, 2021, 39(13): 4262-4269.
|
19 |
倪雨, 郝帅翔. 扰动观测法控制MPPT系统运动特性分析[J]. 电子学报, 2015, 43(7): 1388-1394.
|
|
NIY, HAOS X. Motion characteristics analysis of P & Q control MPPT system[J]. Acta Electronica Sinica, 2015, 43(7): 1388-1394. (in Chinese)
|
20 |
宁勇, 戴瑜兴, 王镇道, 等. 不同MPPT架构光伏系统发电效率的比较研究[J]. 电子学报, 2016, 44(9): 2134-2140.
|
|
NINGY, DAIY X, WANGZ D, et al. A comparative study of central and grouped and distributed MPPT architectures for power generation efficiency of photovoltaic system[J]. Acta Electronica Sinica, 2016, 44(9): 2134-2140. (in Chinese)
|
21 |
刘宿城, 汤运泽, 刘晓东, 等. 不同负载条件下光伏接口MPPT变换器的小信号建模及实验验证[J]. 电子学报, 2019, 47(2): 454-461.
|
|
LIUS C, TANGY Z, LIUX D, et al. Small-signal modeling and experimental verification of PV-interfacing MPPT converter under different load conditions[J]. Acta Electronica Sinica, 2019, 47(2): 454-461. (in Chinese)
|
22 |
魏波, 虞凯, 段永奇. 中低速磁浮对高铁GSM-R通信系统的电磁干扰影响研究[J]. 铁道通信信号, 2015, 51(7): 48-52.
|
|
WEIB, YUK, DUANY Q. Electromagnetic interference influence of low & middle speed maglev train on high-speed railway GSM-R communication system[J]. Railway Signalling & Communication, 2015, 51(7): 48-52. (in Chinese)
|
23 |
ZHAOL J, CHENX, DINGJ W. Interference clearance process of GSM-R network in China[C]//2010 2nd International Conference on Mechanical and Electronics Engineering. Kyoto: IEEE, 2010: 424-428.
|
24 |
赵武元. GSM-R移动通信系统干扰分析及查找[J]. 铁道通信信号, 2009, 45(12): 55-57.
|
25 |
常晓军. 武广高铁湖南段GSM-R电磁环境保护性监测系统研究与实现[D]. 成都: 西南交通大学, 2017: 53-64.
|
|
CHANGX J. Research and Design of GSM-R Electromagnetic Environment Monitoring System[D]. Chengdu: Southwest Jiaotong University, 2017: 53-64. (in Chinese)
|
26 |
湖南省无线电管理委员会办公室. 武广高铁(湖南段)GSM-R频率网格化实时监测系统固定监测小站(基本型及频率扩展型)、系统集成与数据处理中心软件采购项目招标、中标通告[Z]. 长沙: 中国采招网, 2014.
|
27 |
白文林, 邹喜华, 蒋灵明, 等. 面向铁路电磁干扰检测的光子学技术集成系统与现场应用[J]. 铁道学报, 2021, 43(10): 60-68.
|
|
BAIW L, ZOUX H, JIANGL M, et al. Photonics-enabled integrated system and field applications for electromagnetic interference detection along in-service railways[J]. Journal of the China Railway Society, 2021, 43(10): 60-68. (in Chinese)
|