1 |
BACZYNSKI M, JAYARAM B. Fuzzy Implications[M]. Heidelberg: Springer Science Business Media, 2008.
|
2 |
ZADEH L A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(1): 28‑44.
|
3 |
王国俊. 模糊推理的全蕴涵三I算法[J]. 中国科学(E辑), 1999, 29 (1): 43‑53.
|
|
WANG Guo-jun. The full implication triple I mothod of fuzzy reasoning[J]. Sciences in China (Series E), 1999, 29(1): 43‑53. (in Chinese)
|
4 |
罗敏霞, 王雅萍. 基于Schweizer-Sklar三角范数簇的反向三I算法的鲁棒性[J] . 电子学报, 2016, 44(4): 959‑966.
|
|
LUO Min-xia, WANG Ya-ping. Robustness of the reverse triple I algorithms based on Schweizer-Sklar triangular norms [J]. Acta Electronica Sinica, 2016, 44(4): 959‑966. (in Chinese)
|
5 |
ZHOU B K, XU G, LI S J. The quintuple implication principle of fuzzy reasoning[J]. Information Sciences, 2015, 297: 202‑215.
|
6 |
LUO M X, ZHAO R R. Fuzzy reasoning algorithms based on similarity[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34: 213‑219.
|
7 |
ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-I[J]. Information Sciences, 1975, 8: 199‑249.
|
8 |
LI D C, LI Y M, XIE Y J. Robustness of interval-valued fuzzy inference[J]. Information Sciences, 2011, 181: 4754‑ 4764.
|
9 |
王蓉, 惠小静, 井美. 基于区间值模糊推理SIS算法的鲁棒性[J]. 模糊系统与数学, 2018, 32 (5): 1‑7.
|
|
WANG Rong, HUI Xiao-jing, JING Mei. Robustness of SIS algorithm based on interval-valued fuzzy reasoning[J]. Fuzzy Systems and Mathematics, 2018, 32(5): 1‑7. (in Chinese)
|
10 |
LUO M X, ZHANG K. Robustness of full implication algorithms based on interval-valued fuzzy inference[J]. International Journal of Approximate Reasoning, 2015, 62: 61‑72.
|
11 |
LUO M X, ZHOU X L. Interval-valued quintuple implication principle of fuzzy reasoning[J]. International Journal of Approximate Reasoning, 2017, 84: 23‑32.
|
12 |
LUO M X, WANG Y J. ZHAO R R. Interval-valued fuzzy reasoning method based on similarity measure[J]. Journal of Logical and Algebraic Methods in Programming, 2020, 113: 100541.
|
13 |
LUO M X, WANG Y J. Interval-valued fuzzy reasoning full implication alogrithms based on the t -representable t -norm[J]. International Journal of Approximate Reasoning, 2020, 122: 1‑8.
|
14 |
王雅婧, 罗敏霞, 张花荣. 基于区间值 t -可表示三角范数的模糊推理五蕴涵算法[J]. 中国计量大学学报, 2019, 30(3): 351‑360.
|
|
WANG Ya-jing, LUO Min-xia, ZHANG Hua-rong. Interval-valued fuzzy reasoning quintuple implication algorithms based on the t -representable triangular norm[J]. Journal of China University of Metrology, 2019, 30(3): 351‑360. (in Chinese)
|
15 |
KLEMENT E P, MESIAR R, PAP E. Triangular Norms[M]. Netherlands: Kluwer Academic Publishers, 2000.
|
16 |
DAVEY B A, PRIESTLEY H A. Introduction to Lattices and Order[M]. New York: Cambridge University Press, 1990.
|
17 |
DESCHRIJVER G. The archimedean property for t - norms in interval-valued fuzzy set theory[J]. Fuzzy Sets and Systems, 2006, 157(17): 2311‑2327.
|
18 |
JENEI S. A more efficient method for defining fuzzy connectives[J]. Fuzzy Sets and System, 1997, 90: 25‑35.
|
19 |
DESCHRIJVER G, CORNELIS C, KERRE E E. On the representation of intuitionistic fuzzy t -norms and t -conorms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1): 45‑61.
|
20 |
LI D C, XIE Y J, JIANG Y F. Natural negation of interval-valued t - (co)norms and implications[J]. Fuzzy Optimization and Decision Making, 2016, 15(1): 1‑20.
|
21 |
TURUNEN E. Mathematics behind Fuzzy Logic[M]. Dordrecht: Springer Science Business Media, 1999.
|
22 |
WANG G J. On the logic foundation of fuzzy reasoning[J]. Information Sciences, 1999, 117: 47‑88.
|
23 |
LUO M X, ZHOU X L. Interval-valued quintuple implication principle of fuzzy reasoning[J]. International Journal of Approximate Reasoning, 2017, 84: 23‑32.
|