1 |
FARABETC, COUPRIEC, NAJMANL, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(8): 1915-1929.
|
2 |
SIMONYANK, ZISSERMANA. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2022-06-15]. .
|
3 |
Al-QIZWINIM, BARJASTEHI, Al-QASSABH, et al. Deep learning algorithm for autonomous driving using googlenet[C]//IEEE Intelligent Vehicles Symposium. Los Angeles: IEEE, 2017: 89-96.
|
4 |
HEK, ZHANGX, RENS, et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
5 |
HUANGG, LIUZ, L VAN DERMAATEN, et al. Densely connected convolutional networks[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
6 |
LIUS, De MELLOS, GUJ, et al. Learning affinity via spatial propagation networks[C]//Neural Information Processing Systems. Long Beach: MIT Press,2017: 1520-1530.
|
7 |
CHENL C, PAPANDREOUG, KOKKINOSI, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
|
8 |
KRAHENBUHLP, KOLTUNV. Efficient inference in fully connected crfs with Gaussian edge potentials[J]. Advances in Neural Information Processing Systems, 2011, 24: 109-117.
|
9 |
POHLENT, HERMANSA, MATHIASM, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4151-4160.
|
10 |
GUOD, ZHUL, LUY, et al. Tiny object sensitive segmentation of urban street scene with spatial adjacency between object classes[J]. IEEE Transactions on Image Processing, 2018, 28(6): 2643-2653.
|
11 |
YANGZ, YUH, FENGM, et al. Tiny object augmentation of urban scenes for real-time semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 29: 5175-5190.
|
12 |
CHANDRAS, KOKKINOSI. Fast exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFs[C]//European Conference on Computer Vision. Netherlands: Springer, 2016: 402-418.
|
13 |
JAMPANIV, KIEFELM, GEHLERP V. Learning sparse high dimensional filters: Image filtering, dense crfs and bilateral neural networks[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4452-4461.
|
14 |
ZHAOH, SHIJ, QIX, et al. Pyramid scene parsing network[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
|
15 |
YUF, KOLTUNV. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Learning Representations. San Diego: OpenReview.net, 2015: 1-14.
|
16 |
CHENL C, ZHUY, PAPANDREOUG, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Munich: Springer, 2018: 801-818.
|
17 |
BERTASIUSG, SHIJ, TORRESANIL. Semantic segmentation with boundary neural fields[C]//Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3602-3610.
|
18 |
CHENGD, MENGG, XIANGS, et al. Fusionnet: Edge aware deep convolutional networks for semantic segmentation of remote sensing harbor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5769-5783.
|
19 |
LING, MILANA, SHENC, et al. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1925-1934.
|
20 |
PENGC, ZHANGX, YUG, et al. Large kernel matters - improve semantic segmentation by global convolutional network[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4353-4361.
|
21 |
TAKIKAWAT, ACUNAD, JAMPANIV, et al. Gated-SCNN: Gated shape cnns for semantic segmentation[C]//International Conference on Computer Vision. South Korea: IEEE, 2019: 5229-5238.
|
22 |
DINGH, JIANGX, LIUA, et al. Boundary-aware feature propagation for scene segmentation[C]//International Conference on Computer Vision. South Korea: IEEE, 2019: 6819-6829.
|
23 |
HOLSCHNEIDERM. A real-time algorithm for signal analysis with the help of the wavelet transform[J]. Wavelets, 1988, 1: 286-297.
|
24 |
VAIDYANATHANP P. Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial[J]. Proc IEEE, 1990, 78(1): 56-93.
|
25 |
HUANGZ, WANGX, HUANGL, et al. Ccnet: Criss-cross attention for semantic segmentation[C]//International Conference on Computer Vision. South Korea: IEEE, 2019: 603-612.
|
26 |
LIX, ZHONGZ, WUJ, et al. Expectation-maximization attention networks for semantic segmentation[C]//International Conference on Computer Vision. South Korea: IEEE, 2019: 9167-9176.
|
27 |
ZHONGZ, LINZ Q, BIDARTR, et al. Squeeze-and-attention networks for semantic segmentation[C]//Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13065-13074.
|
28 |
HUJ, SHENL, SUNG. Squeeze-and-excitation networks[C]//Computer Vision and Pattern Recognition. Washington: IEEE, 2018: 7132-7141.
|
29 |
CHENL, ZHANGH, XIAOJ, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5659-5667.
|
30 |
ZHIDINGY, CHENF, LIUM, et al. Casenet: Deep category-aware semantic edge detection[C]//Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1761-1770.
|
31 |
ACUNAD, KARA, FidlerS. Devil is in the edges: Learning semantic boundaries from noisy annotations[C]//Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11075-11083.
|
32 |
PERAZZIF, PONT-TUSETJ, McWilliamsB, et al. A benchmark dataset and evaluation methodology for video object segmentation[C]//Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 724-732.
|
33 |
梁新宇, 林洗坤, 权冀川, 肖铠鸿. 基于深度学习的图像实例分割技术研究进展[J]. 电子学报, 2020, 48(12): 2476-2486.
|
|
LIANGX, LINX, QUANY, et al. Research on the progress of image instance segmentation based on deep learning[J].Acta Electronica Sinica, 2020, 48(12): 2476-2486. (in Chinese)
|
34 |
蔡超丽, 李纯纯, 黄琳, 杨铁军. ED-NAS: 基于神经网络架构搜索的陶瓷晶粒SEM图像分割方法[J]. 电子学报,2022, 50(2): 461-469.
|
|
CAIC, LIC, HUANGL, et al. ED-NAS: Ceramic grain segmentation based on neural architecture search using SEM images[J].Acta Electronica Sinica, 2022, 50(2): 461-469. (in Chinese)
|
35 |
MISHRAP, SARAWADEKARK. Polynomial learning rate policy with warm restart for deep neural network[C]//IEEE Region 10 Conference. India: IEEE, 2019: 2087-2092.
|
36 |
IOFFES, SZEGEDYC. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille: PMLR, 2015: 448-456.
|
37 |
LONGJ, SHELHAMERE, DARRELLT. Fully convolutional networks for semantic segmentation[C]//Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
38 |
LIX, LIX, ZHANGL, et al. Improving semantic segmentation via decoupled body and edge supervision[C]//European Conference on Computer Vision. Glasgow: Springer, 2020:1-14.
|
39 |
ZHAOH, ZHANGY, LIUS, et al. PSANET: Point-wise spatial attention network for scene parsing[C]//European Conference on Computer Vision. Munich: Springer, 2018: 267-283.
|
40 |
FUJ, LIUJ, TIANH, et al. Dual attention network for scene segmentation[C]//Computer Vision and Pattern Recognition. New York: IEEE, 2019: 3146-3154.
|
41 |
BOWENC, ALEXS, ALEXANDERK. Per-pixel classification is not all you need for semantic segmentation[C]//Neural Information Processing Systems. Virtual Conference: MIT, 2021:1-12.
|
42 |
ZAGORUYKOS, KOMODAKISN. Wide residual networks(EB/OL).(2016-03-23)[2022-06-15]..
|
43 |
DAIJ, QIH, XIONGY, et al. Deformable convolutional networks[C]//International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
|
44 |
ZHUL, JID, ZHUS, et al. Learning statistical texture for semantic segmentation[C]//Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12537-12546.
|