1 |
梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J]. 中国科学: 信息科学, 2015, 45(11): 1355‐1369.
|
|
LIANG Ji-ye, QIAN Yu-hua, LI De-yu, et al. Theory and method of granular computing for big data mining[J]. Science China: Information Sciences, 2015, 45(11): 1355 ‐1369. (in Chinese)
|
2 |
ZADEH L A. Fuzzy sets[J]. Information Control, 1965, 8(3): 338‐353.
|
3 |
YAO Y Y. Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103: 107‐123.
|
4 |
LIU D, YANG X, LI T R. Three-way decisions: beyond rough sets and granular computing[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5): 989 ‐1002.
|
5 |
ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111‐127.
|
6 |
徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8): 1497‐1517.
|
|
XU Ji, WANG Guo-yin, YU Hong. Review of big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38(8): 1497‐1517. (in Chinese)
|
7 |
PEDRYCZ W. Interpretable Artificial Intelligence: A Perspective of Granular Computing[M]. Berlin: Springer-Verlag, 2021: 333‐369.
|
8 |
PEDRYCZ W. From numeric to granular description and interpretation of information granules[J]. Fundamenta Informaticae, 2013, 127(1-4): 399‐412.
|
9 |
ZHI H L, LI J H. Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104: 62 ‐73.
|
10 |
智慧来, 李金海. 基于必然属性分析的粒描述[J]. 计算机学报, 2018, 41(12): 2702‐2719.
|
|
ZHI Hui-lai, LI Jin-hai. Granule description based on necessary attribute analysis[J]. Chinese Journal of Computers, 2018, 41(12): 2702‐2719. (in Chinese)
|
11 |
LI J H, LIU Z M. Granule description in knowledge granularity and representation[J]. Knowledge-Based Systems, 2020, 203: 106160.
|
12 |
ZHU X B, PDERYCZ W, LI Z W. Granular data description: Designing ellipsoidal information granules[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4475‐4484.
|
13 |
苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2): 351‐363.
|
|
MIAO Duo-qian, XU Fei-fei, YAO Yi-yu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2): 351‐363. (in Chinese)
|
14 |
GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundation[M]. Berlin: Springer-Verlag, 1999: 25‐36.
|
15 |
BURUSCO JUANDEABURRE A, FUENTES-GONZALEZ R. The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 1(3): 209‐218.
|
16 |
BELOHLAVEK R, DVORAK J, OUTRATA J. Fast factorization by similarity in formal concept analysis of data with fuzzy attributes[J]. Journal of Computer and System Sciences, 2007, 73(6): 1012‐1022.
|
17 |
刘宗田, 强宇, 周文, 等. 一种模糊概念格模型及其渐进式构造算法[J]. 计算机学报, 2007, 30(2): 184‐188.
|
|
LIU Zong-tian, QIANG Yu, ZHOU Wen, et al. A fuzzy concept lattice model and its incremental construction algorithm[J]. Chinese Journal of Computers, 2007, 30(2): 184‐188. (in Chinese)
|
18 |
邹丽, 冯凯华, 刘新. 语言值直觉模糊概念格及其应用[J]. 计算机研究与发展, 2018, 55(8): 1726‐1734.
|
|
ZOU Li, FENG Kai-hua, LIU Xin. Linguistic-valued in intuitionistic fuzzy concept lattice and its application[J]. Journal of Computer Research and Development, 2018, 55(8): 1726‐1734. (in Chinese)
|
19 |
HE X L, WEI L, SHE Y H. L-fuzzy concept analysis for three-way decisions: basic definitions and fuzzy inference mechanisms[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1857‐1867.
|
20 |
ZHANG Z. Constructing L-fuzzy concept lattices without fuzzy Galois closure operation[J]. Fuzzy Sets and Systems, 2018, 333: 71‐86.
|
21 |
BARTL E, KONECNY J. L-concept analysis with positive and negative attributes[J]. Information Sciences, 2016, 360: 96‐111.
|
22 |
YAO Y Y. Rough-set concept analysis: Interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346-347: 442 ‐462.
|