电子学报 ›› 2022, Vol. 50 ›› Issue (4): 769-781.DOI: 10.12263/DZXB.20211186

所属专题: 微波光子与相关元件技术 微波光子技术 长摘要论文

• 微波光子技术 •    下一篇

微波光子传感技术研究进展综述

王彬1,2,3, 张伟锋1,2,3, 赵双祥1,2,3,4, 樊昕昱4   

  1. 1.北京理工大学信息与电子学院雷达技术研究所,北京 100081
    2.北京理工大学重庆创新中心,重庆 401120
    3.新体制民用雷达重庆市重点实验室,重庆 401120
    4.上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
  • 收稿日期:2021-08-31 修回日期:2022-01-18 出版日期:2022-04-25
    • 作者简介:
    • 王 彬 男,1992年出生,湖南娄底人.2020年于上海交通大学电子信息与电气工程学院获得博士学位,北京理工大学预聘助理教授(特别副研究员),硕士生导师.研究方向为微波光子传感、信号处理、集成微波光子芯片等.E-mail: bin_wang@bit.edu.cn
      张伟锋 男,1985年出生,河南洛阳人.北京理工大学教授,博士生导师,国家海外高层次青年人才计划入选专家.研究方向为集成微波光子学和光子计算等.E-mail: weifeng.zhang@bit.edu.cn
      赵双祥 男,1993年出生,江苏连云港人.2021年于上海交通大学电子信息与电气工程学院获得博士学位,北京理工大学博士后.研究方向为超高精度光学传感、精密光学陀螺仪等.E-mail: beichen@sjtu.edu.cn
      樊昕昱 男,1978年出生,江苏南通人.上海交通大学教授,博士生导师,国家海外高层次青年人才计划入选专家.研究方向为分布式光纤传感、双光梳精密测量等.E-mail: fan.xinyu@sjtu.edu.cn
    • 基金资助:
    • 国家重点研发计划 (2018YFE0201801); 重庆市自然科学基金 (cstc2020jcyj-msxmX0673); 国家自然科学基金 (62005018)

Recent Progress in Microwave Photonic Sensors

WANG Bin1,2,3, ZHANG Wei-feng1,2,3, ZHAO Shuang-xiang1,2,3,4, FAN Xin-yu4   

  1. 1.Radar Research Lab, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
    2.Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
    3.Chongqing Key Laboratory of Novel Civilian Radar, Chongqing 401120, China
    4.State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-08-31 Revised:2022-01-18 Online:2022-04-25 Published:2022-04-25
    • Supported by:
    • National Key Research and Development Program of China (2018YFE0201801); Natural Science Foundation of Chongqing Municipality, China (cstc2020jcyj-msxmX0673); National Natural Science Foundation of China (62005018)

摘要:

微波光子学是一门研究光与微波相互作用的新型交叉学科,旨在利用现代光学技术实现高频宽带微波信号产生、传输、处理和测量.其中,微波光子传感是微波光子学一个重要的研究领域,它采用光学传感器实现温度、应变、压力等传感参量光域感知,基于微波光子技术实现光域传感信息到微波域的线性映射和转换,结合微波信号处理技术实现传感信号解调,具有传感精度高、测量速度快等显著优势.本文系统性地回顾了微波光子传感技术最新研究进展,介绍了各类微波光子传感技术的基本工作原理,并展望了未来的研究方向和发展趋势.

长摘要
随着物联网的不断发展和“智慧城市”建设的快速推进,传感技术作为一种重要的信息感知手段,成为当前国内外研究热点。目前,现有传感技术可以分为光学传感和电学传感两类。其中,光学传感技术以光信号作为传感信息载体,以各类光子器件作为传感单元,通过测量外界物理参量引起的光信号参数(强度、波长、相位、偏振等)变化,可实现温度、应变、压力、折射率、角速度等各种物理参量传感,具有灵敏度高、体积小、质量轻、抗电磁干扰、复用能力强等优点,被广泛应用于边界安防、能源电力、石油化工、生物医疗、结构健康检测等领域。

微波光子传感作为一种新型的传感技术,旨在利用微波光子技术实现光域传感信息到微波域的线性映射和转换。通过将低精度的光信号波长、功率等测量转化为高精度的微波频率、相位等测量,结合精密微波测量仪器和精细微波信号处理技术,可显著提高传感系统的测量精度和速度。本文详细介绍了微波光子传感技术的最新研究进展,包括基于微波光子信号产生的传感技术、基于微波光子滤波的传感技术、基于频谱整形-波长时间映射的传感技术、分布式/准分布式微波光子传感技术和集成微波光子传感技术等,最后展望了微波光子传感技术未来的研究方向和发展趋势。

关键词: 微波光子传感器, 信号产生, 微波光子滤波, 频谱整形-波长时间映射, 分布式/准分布式传感, 集成微波光子

Abstract:

Microwave photonics is a multidisciplinary field that studies the interaction between microwave and optical waves for the generation, transmission, processing, and measurement of wideband microwave signals by means of photonics. Microwave photonic sensors are one of the active sub-fields that uses optical sensors to probe the information of temperature, strain, pressure, etc. and microwave photonic techniques to extract the sensing information accurately, providing unique advantages of high resolution and high speed. This paper comprehensively reviews the recent progress in microwave photonic sensors, introduces the basic principle of microwave photonic sensing, and discusses the potential research directions in the future.

Extended Abstract
With the rapid development of the internet of things (IoT) and the construction of smart cities, sensing technology, as an important tool for acquiring various physical information, has become a popular research field and has been heavily investigated for the last few decades. According to the working principle, sensing technology can be divided into two categories: electrical sensing technology and optical sensing technology. Different from the conventional electrical sensing technology, the optical sensing technology uses emerging optical devices as the sensing elements, which encode the measurands (such as temperature, strain, pressure, refractive index, angular velocity, etc.) into the parameters (including amplitude, wavelength, phase, polarization state, etc.) of the optical signal. By monitoring the change of the parameters of optical signals, the measurands can be extracted with a high accuracy. The optical sensing technology holds unique advantages of high sensitivity, small size, light weight, immunity to electromagnetic interference, and high multiplexing capability, making it suitable for a variety of practical applications, including border security, energy and power industry, petrochemical, biomedical sensing, civil structure health monitoring, etc.

In general, an optical sensing system is implemented to monitor the wavelength shift or power fluctuation due to the change in the environmental conditions using bulky optical measurement instruments, such as optical spectrum analyzer, tunable optical bandwidth filter, etc. These methods are capable of providing a large measurement range, but they suffer from a limited resolution and a low measurement speed. Microwave photonics, as a multidisciplinary field, studies the interaction between microwave and optical waves for the generation, transmission, processing, and measurement of wideband microwave signals by means of photonics. Microwave photonic sensing is one of the research hotspots of microwave photonics. It uses optical devices to probe the measurands (such as temperature, strain, pressure, refractive index, angular velocity, etc.) in the optical domain and employs microwave photonic techniques to extract the measurands accurately in the electrical domain, which provides unique advantages of ultrahigh measurement resolution and ultrahigh interrogation speed. In this paper, we comprehensively review the recent progress in microwave photonic sensors, including sensors based on microwave photonic signal generation, sensors based on microwave photonic filtering, sensors based on spectral-shaping and wavelength-to-time mapping, distributed/quasi-distributed microwave photonic sensors, and integrated microwave photonic sensors. Finally, we discuss the potential research directions and the development trend of the microwave photonic sensors.

Key words: microwave photonic sensors, signal generation, microwave photonic filter, spectral-shaping and frequency-to-time mapping, distributed/ quasi-distributed sensing, integrated microwave photonics

中图分类号: