电子学报 ›› 2022, Vol. 50 ›› Issue (4): 769-781.DOI: 10.12263/DZXB.20211186
所属专题: 微波光子与相关元件技术; 微波光子技术; 长摘要论文
• 微波光子技术 • 下一篇
王彬1,2,3, 张伟锋1,2,3, 赵双祥1,2,3,4, 樊昕昱4
收稿日期:
2021-08-31
修回日期:
2022-01-18
出版日期:
2022-04-25
作者简介:
基金资助:
WANG Bin1,2,3, ZHANG Wei-feng1,2,3, ZHAO Shuang-xiang1,2,3,4, FAN Xin-yu4
Received:
2021-08-31
Revised:
2022-01-18
Online:
2022-04-25
Published:
2022-04-25
Supported by:
摘要:
微波光子学是一门研究光与微波相互作用的新型交叉学科,旨在利用现代光学技术实现高频宽带微波信号产生、传输、处理和测量.其中,微波光子传感是微波光子学一个重要的研究领域,它采用光学传感器实现温度、应变、压力等传感参量光域感知,基于微波光子技术实现光域传感信息到微波域的线性映射和转换,结合微波信号处理技术实现传感信号解调,具有传感精度高、测量速度快等显著优势.本文系统性地回顾了微波光子传感技术最新研究进展,介绍了各类微波光子传感技术的基本工作原理,并展望了未来的研究方向和发展趋势.
中图分类号:
王彬, 张伟锋, 赵双祥, 等. 微波光子传感技术研究进展综述[J]. 电子学报, 2022, 50(4): 769-781.
Bin WANG, Wei-feng ZHANG, Shuang-xiang ZHAO, et al. Recent Progress in Microwave Photonic Sensors[J]. Acta Electronica Sinica, 2022, 50(4): 769-781.
传感技术 | 优点 | 缺点 |
---|---|---|
微波光子信号产生传感技术 | 高传感精度高,测量速度(~kHz) | 传感范围受限,通常为单点传感 |
微波光子滤波传感技术 | 高传感精度,可实现多元参量传感 | 解调系统复杂,测量速度受限 |
频谱整形-波长时间映射传感技术 | 超高测量速度(数十兆赫兹) | 解调系统带宽要求高,成本较高 |
分布式/准分布式传感技术 | 可实现多点/分布式传感 | 传感单元器件参数需特殊设计 |
集成微波光子传感技术 | 小尺寸、高灵敏度、低成本、高稳定性 | 插入损耗大,批量制备工艺尚不成熟 |
表1 微波光子传感技术对比
传感技术 | 优点 | 缺点 |
---|---|---|
微波光子信号产生传感技术 | 高传感精度高,测量速度(~kHz) | 传感范围受限,通常为单点传感 |
微波光子滤波传感技术 | 高传感精度,可实现多元参量传感 | 解调系统复杂,测量速度受限 |
频谱整形-波长时间映射传感技术 | 超高测量速度(数十兆赫兹) | 解调系统带宽要求高,成本较高 |
分布式/准分布式传感技术 | 可实现多点/分布式传感 | 传感单元器件参数需特殊设计 |
集成微波光子传感技术 | 小尺寸、高灵敏度、低成本、高稳定性 | 插入损耗大,批量制备工艺尚不成熟 |
1 | KERSEYA D, DAVISM A, PATRICKH J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463. |
2 | TIWARIU, THYAGARAJANK, SHENOYM R, et al. EDF-based edge-filter interrogation scheme for FBG sensors[J]. IEEE Sensors Journal, 2013, 13(4): 1315-1319. |
3 | XUM G, GEIGERH, DAKINJ P. Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter[J]. Journal of Lightwave Technology, 1996, 14(3): 391-396. |
4 | HERVÁSJ, RICCHIUTIA L, LIW, et al. Microwave photonics for optical sensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 327-339. |
5 | YAOJ P. Microwave photonic sensors[J]. Journal of Lightwave Technology, 2021, 39(12): 3626-3637. |
6 | KIMH K, KIMS K, PARKH G, et al. Polarimetric fiber laser sensors[J]. Optics Letters, 1993, 18(4): 317-319. |
7 | KIMH K, KIMS K, KIMB Y. Polarization control of polarimetric fiber-laser sensors[J]. Optics Letters, 1993, 18(17): 1465-1467. |
8 | HADELERO, IBSENM, ZERVASM N. Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain[J]. Applied Optics, 2001, 40(19): 3169-3175. |
9 | SHAOL Y, DONGX Y, ZHANGA P, et al. High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 2007, 19(20): 1598-1600. |
10 | FUH Y, SHUX W, MOUC B, et al. Transversal loading sensor based on tunable beat frequency of a dual-wavelength fiber laser[J]. IEEE Photonics Technology Letters, 2009, 21(14): 987-989. |
11 | LIUW S, GUOT, WONGA C L, et al. Highly sensitive bending sensor based on Er 3+-doped DBR fiber laser[J]. Optics Express, 2010, 18(17): 17834-17840. |
12 | GUANB O, JINL, ZHANGY, et al. Polarimetric heterodyning fiber grating laser sensors[J]. Journal of Lightwave Technology, 2012, 30(8): 1097-1112. |
13 | ZHANGY, GUANB O, TAMH Y. Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement[J]. Optics Communications, 2008, 281(18): 4619-4622. |
14 | ZHANGY, GUANB O. High-sensitivity distributed Bragg reflector fiber laser displacement sensor[J]. IEEE Photonics Technology Letters, 2009, 21(5): 280-282. |
15 | GUANB O, WANGS N. Fiber grating laser current sensor based on magnetic force[J]. IEEE Photonics Technology Letters, 2010, 22(4): 230-232. |
16 | GUOT, WONGA C L, LIUW S, et al. Beat-frequency adjustable Er 3+-doped DBR fiber laser for ultrasound detection[J]. Optics Express, 2011, 19(3): 2485-2492. |
17 | YINZ W, GAOL, LIUS C, et al. Fiber ring laser sensor for temperature measurement[J]. Journal of Lightwave Technology, 2010, 28(23): 3403-3408. |
18 | LIUS C, YINZ W, ZHANGL, et al. Multilongitudinal mode fiber laser for strain measurement[J]. Optics Letters, 2010, 35(6): 835-837. |
19 | GAOL, LIUS C, YINZ W, et al. Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques[J]. IEEE Photonics Technology Letters, 2011, 23(1): 18-20. |
20 | GUOY, MAOX W, SONGS L, et al. Multi-longitudinal mode fiber laser digital vibration-sensing system based on a multi-carrier modulation/demodulation technique[J]. Optics Express, 2020, 28(21): 31808-31820. |
21 | HUANGL, WANGP, GAOL, et al. Multiplexed multi-longitudinal mode fiber laser sensor[J]. Optics Express, 2014, 22(21): 25722-25728. |
22 | DAIY, SUNQ Z, TANS S, et al. Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation[J]. Optics Express, 2012, 20(25): 27367-27376. |
23 | BERNHARDIE H, WERFK O VAN DER, HOLLINKA J F, et al. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser[J]. Laser & Photonics Reviews, 2013, 7(4): 589-598. |
24 | DENGM, LIUD H, HUANGW, et al. Highly-sensitive magnetic field sensor based on fiber ring laser[J]. Optics Express, 2016, 24(1): 645-651. |
25 | XUR H, ZHANGX P. Multiwavelength Brillouin-erbium fiber laser temperature sensor with tunable and high sensitivity[J]. IEEE Photonics Journal, 2015, 7(3): 1-8. |
26 | MALEKIL. The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730. |
27 | YAOX S, MALEKIL. Multiloop optoelectronic oscillator[J]. IEEE Journal of Quantum Electronics, 2000, 36(1): 79-84. |
28 | YAOX S, MALEKIL. Optoelectronic oscillator for photonic systems[J]. IEEE Journal of Quantum Electronics, 1996, 32(7): 1141-1149. |
29 | YAOJ P. Optoelectronic oscillators for high speed and high resolution optical sensing[J]. Journal of Lightwave Technology, 2017, 35(16): 3489-3497. |
30 | NGUYENL D, NAKATANIK, JOURNETB. Refractive index measurement by using an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2010, 22(12): 857-859. |
31 | LEEC H, YIMS H. Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device[J]. Optics Express, 2014, 22(11): 13634-13640. |
32 | ZOUX H, LIM, PANW, et al. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator[J]. Optics Express, 2014, 22(9): 11129-11139. |
33 | ZHUY H, JINX F, CHIH, et al. High-sensitivity temperature sensor based on an optoelectronic oscillator[J]. Applied Optics, 2014, 53(22): 5084-5087. |
34 | JINX F, ZHUY H, GUOJ J, et al. Highly sensitive demodulation of a vibration-induced phase shift based on a low-noise OEO[J]. Optics Letters, 2017, 42(20): 4052-4054. |
35 | FANZ Q, SUJ, ZHANGT H, et al. High-precision thermal-insensitive strain sensor based on optoelectronic oscillator[J]. Optics Express, 2017, 25(22): 27037-27050. |
36 | ZHANGJ, WANGM G, TANGY, et al. High-sensitivity measurement of angular velocity based on an optoelectronic oscillator with an intra-loop Sagnac interferometer[J]. Optics Letters, 2018, 43(12): 2799-2802. |
37 | WANGM G, ZHANGN H, HUANGX D, et al. High sensitivity demodulation of a reflective interferometer-based optical current sensor using an optoelectronic oscillator[J]. Optics Letters, 2020, 45(16): 4519-4522. |
38 | LIM, LIW Z, YAOJ P, et al. Femtometer-resolution wavelength interrogation of a phase-shifted fiber Bragg grating sensor using an optoelectronic oscillator[C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington: Optica Publishing Group, 2012: BTu2E.3. |
39 | KONGF Q, LIW Z, YAOJ P. Transverse load sensing based on a dual-frequency optoelectronic oscillator[J]. Optics Letters, 2013, 38(14): 2611-2613. |
40 | KONGF Q, ROMEIRAB, ZHANGJ J, et al. A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing[J]. Journal of Lightwave Technology, 2014, 32(9): 1784-1793. |
41 | WANGY P, ZHANGJ J, YAOJ P. An optoelectronic oscillator for high sensitivity temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1458-1461. |
42 | YINB, WANGM G, WUS H, et al. High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter[J]. Optics Express, 2017, 25(13): 14106-14113. |
43 | WUB L, WANGM G, DONGY, et al. Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters[J]. Optics Express, 2018, 26(21): 27628-27638. |
44 | YANGY G, WANGM G, SHENY, et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a fabry-perot fiber Bragg grating[J]. IEEE Photonics Journal, 2018, 10(1): 1-9. |
45 | FENGD Q, KAI L, ZHUT, et al. High-precision strain-insensitive temperature sensor based on an optoelectronic oscillator[J]. Optics Express, 2019, 27(26): 37532-37540. |
46 | FUH Y, ZHANGW, MOUC B, et al. High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering[J]. IEEE Photonics Technology Letters, 2009, 21(8): 519-521. |
47 | HUANGJ, LANX W, SONGY, et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1398-1401. |
48 | CAOY, GUOT, WANGX D, et al. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation[J]. Optics Express, 2015, 23(21): 27061-27070. |
49 | WANGY P, WANGM, XIAW, et al. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique[J]. Optics Express, 2016, 24(16): 17960-17967. |
50 | ZHENGD, MADRIGALJ, BARRERAD, et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710. |
51 | ZHUK, CHENGX, ZHAOZ Y, et al. High-sensitivity, high-resolution polymer fiber Bragg grating humidity sensor harnessing microwave photonic filtering response analysis[J]. Optics Letters, 2020, 45(24): 6603-6606. |
52 | DENGY, LIM, HUANGN B, et al. Optical length-change measurement based on an incoherent single-bandpass microwave photonic filter with high resolution[J]. Photonics Research, 2014, 2(4): B35-B39. |
53 | WANGY P, NIX Q, WANGM, et al. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter[J]. Optics Express, 2017, 25(2): 644-653. |
54 | COMANICIM I, CHENL R, KUNGP. Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors[J]. Applied Optics, 2017, 56(32): 9074-9078. |
55 | LIL W, YIX K, CHEWS X, et al. Double-pass microwave photonic sensing system based on low-coherence interferometry[J]. Optics Letters, 2019, 44(7): 1662-1665. |
56 | XUZ W, SHUX W, FUH Y. Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect[J]. Optics Express, 2017, 25(18): 21559-21566. |
57 | LUOC M, ZHENGD, ZOUX H, et al. Performance upgradation of microwave photonic filtering interrogation using Gaussian process regression[J]. Journal of Lightwave Technology, 2021, 39(24): 7682-7688. |
58 | XIAOD R, SHAOL Y, WANGC, et al. Optical sensor network interrogation system based on nonuniform microwave photonic filters[J]. Optics Express, 2021, 29(2): 2564-2576. |
59 | YAOJ P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 2011, 284(15): 3723-3736. |
60 | CHOUJ, HANY, JALALIB. Time-wavelength spectroscopy for chemical sensing[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1140-1142. |
61 | XIAH Y, WANGC, BLAISS, et al. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion[J]. Journal of Lightwave Technology, 2010, 28(3): 254-261. |
62 | WANGC, YAOJ P. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy[J]. Journal of Lightwave Technology, 2011, 29(19): 2927-2933. |
63 | LIUW L, LIM, WANGC, et al. Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio[J]. Journal of Lightwave Technology, 2011, 29(9): 1239-1247. |
64 | LIUW L, LIW Z, YAOJ P. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature[J]. IEEE Photonics Technology Letters, 2011, 23(18): 1340-1342. |
65 | DENGH, LUP, MIHAILOVS J, et al. High-speed and high-resolution interrogation of a strain and temperature random grating sensor[J]. Journal of Lightwave Technology, 2018, 36(23): 5587-5592. |
66 | LEIM, ZOUW W, LIX, et al. Ultrafast FBG interrogator based on time-stretch method[J]. IEEE Photonics Technology Letters, 2016, 28(7): 778-781. |
67 | FERNÁNDEZM P, BULUS ROSSINIL A, CRUZJ L, et al. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters[J]. Optics Express, 2019, 27(25): 36815-36823. |
68 | BAIZ Y, YANF P, TANGM, et al. Real-time strain interrogation based on an STS structure and wavelength-to-time mapping[J]. IEEE Photonics Technology Letters, 2021, 33(12): 615-618. |
69 | BAIZ Y, YANF P, HANW G, et al. Ultrafast and temperature-insensitive strain interrogation using a PM-PCF based Sagnac loop interferometer and wavelength-to-time mapping[J]. Optics Express, 2021, 29(9): 13778-13786. |
70 | HUANGJ, HUAL, LANX W, et al. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing[J]. Optics Express, 2013, 21(15): 18152-18159. |
71 | HUANGJ, LANX W, LUOM, et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J]. Optics Express, 2014, 22(15): 18757-18769. |
72 | RICCHIUTIA L, BARRERAD, SALESS, et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J]. Optics Express, 2013, 21(23): 28175-28181. |
73 | XIAL, CHENGR, LIW, et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 2015, 27(3): 323-325. |
74 | HERVÁSJ, TOSID, GARCÍA-MIQUELH, et al. KLT-Based Interrogation technique for FBG multiplexed sensor tracking[J]. Journal of Lightwave Technology, 2017, 35(16): 3387-3392. |
75 | WUN S, XIAM, WUY, et al. Microwave photonics interrogation for multiplexing fiber Fabry-Perot sensors[J]. Optics Express, 2021, 29(11): 16652-16664. |
76 | JINL, LIANGY Z, LIM P, et al. A 16-element multiplexed heterodyning fiber grating laser sensor array[J]. Journal of Lightwave Technology, 2014, 32(22): 4410-4415. |
77 | WANGW X, LIUY, DUX W, et al. Ultra-stable and real-time Demultiplexing system of strong fiber Bragg grating sensors based on low-frequency optoelectronic oscillator[J]. Journal of Lightwave Technology, 2020, 38(4): 981-988. |
78 | AHMADE J, WANGC, FENGD J, et al. High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry[J]. Journal of Lightwave Technology, 2017, 35(16): 3289-3295. |
79 | ZHOUL, LIZ Y, XIANGN, et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 2018, 43(11): 2430-2433. |
80 | LIUJ X, LUP, MIHAILOVS J, et al. Real-time random grating sensor array for quasi-distributed sensing based on wavelength-to-time mapping and time-division multiplexing[J]. Optics Letters, 2019, 44(2): 379-382. |
81 | WANGB, LUP, MIHAILOVS J, et al. Real-time and high-precision interrogation of a linearly chirped fiber Bragg grating sensor array based on dispersive time delay and optical pulse compression[J]. Optics Letters, 2019, 44(13): 3246-3249. |
82 | STERNL, NAIMANA, KEINANG, et al. Ultra-precise optical to radio frequency based chip-scale refractive index and temperature sensor[J]. Optica, 2017, 4(1): 1-7. |
83 | CHEWS X, YIX K, YANGW J, et al. Optoelectronic oscillator based sensor using an on-chip sensing probe[J]. IEEE Photonics Journal, 2017, 9(2): 1-9. |
84 | TIANX Y, POWELLK, LIL W, et al. High-resolution optical microresonator-based sensor enabled by microwave photonic sidebands processing[J]. Journal of Lightwave Technology, 2020, 38(19): 5440-5449. |
85 | TIANX Y, LIL W, CHEWS X, et al. Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor[J]. Journal of Lightwave Technology, 2021, 39(24): 7646-7655. |
86 | DENGH, ZHANGW F, YAOJ P. High-speed and high-resolution interrogation of a silicon photonic microdisk sensor based on microwave photonic filtering[J]. Journal of Lightwave Technology, 2018, 36(19): 4243-4249. |
87 | LIUJ X, DENGH, ZHANGW F, et al. On-chip sensor for simultaneous temperature and refractive index measurements based on a dual-passband microwave photonic filter[J]. Journal of Lightwave Technology, 2018, 36(18): 4099-4105. |
88 | JINM, TANGS J, CHENJ H, et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer[J]. Nature Communications, 2021, 12: 1973. |
89 | LIAOJ, YANGL. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements[J]. Light: Science & Applications, 2021, 10: 33. |
[1] | 王俊嘉, 房崇宝, Chen Lawrence R. 硅基亚波长光栅波导在微波光子学中的应用[J]. 电子学报, 2022, 50(9): 2233-2241. |
[2] | 姜凌珂, 张琪, 潘林兵, 董玮, 张歆东, 阮圣平. 单通带微波光子滤波器泵浦响应性能研究[J]. 电子学报, 2017, 45(7): 1620-1626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||