1 |
路永鑫, 魏云冰, 赵启承, 等. 基于层次分析法和改进A*算法的电力应急机器人路径规划[J]. 电力系统保护与控制, 2021, 49(9): 82-89.
|
|
LUY X, WEIY B, ZHAOQ C, et al. Path planning of a power emergency robot based on an analytic hierarchy process and improved A* algorithm[J]. Power System Protection and Control, 2021, 49(9): 82-89. (in Chinese)
|
2 |
MANDALS, SAHAD, MAHANTIA. A heuristic search for generalized cellular network planning[C]//2002 IEEE International Conference on Personal Wireless Communications. New Delhi, India: IEEE, 2002: 105-109.
|
3 |
LINQ Z, LIUS B, ZHUQ L, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46.
|
4 |
ROJAS SANTIAGOM, MUTHUSWAMYS, HULETTM. An ACO algorithm for scheduling a flow shop with setup times[J]. International Journal of Industrial and Systems Engineering, 2020, 36(1): 98-109.
|
5 |
LIJ, SHUZ. Research on path planning based on improved D* lite genetic algorithm[J]. Machine Tool & Hydraulics, 2019, 47(11): 39-42.
|
6 |
YANX S, LIP P, TANGK, et al. Clonal selection based intelligent parameter inversion algorithm for prestack seismic data[J]. Information Sciences, 2020, 517: 86-99.
|
7 |
WANGH Q, HUY Y, LIAOW D, et al. Path planning algorithm based on improved artificial bee colony algorithm[J]. Control Engineering, 2016, 23(95): 1407-1411.
|
8 |
VITERBIA J. CDMA: Principles of Spread Spectrum Communication[M]. Wokingham: Addison-Wesley, 1995.
|
9 |
SKOLNIKM I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008.
|
10 |
XIEG, SHANGGUANA Q, FEIR, et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J].Science China Information Sciences, 2020, 63(11): 1-21.
|
11 |
许凯波, 鲁海燕, 黄洋, 等. 基于双层蚁群算法和动态环境的机器人路径规划方法[J]. 电子学报, 2019, 47(10): 2166-2176.
|
|
XUK B, LUH Y, HUANGY, et al. Robot path planning based on double-layer ant colony optimization algorithm and dynamic environment[J]. Acta Electronica Sinica, 2019, 47(10): 2166-2176. (in Chinese)
|
12 |
WENT, YANGD C, LIUW F, et al. A novel integrated path planning algorithm for warehouse AGVs[J]. Chinese Journal of Electronics, 2021, 30(2): 331-338.
|
13 |
陈劲峰, 黄卫华, 章政, 等. 动态环境下基于改进人工势场法的路径规划算法[J]. 组合机床与自动化加工技术, 2020(12): 6-9, 14.
|
|
CHENJ F, HUANGW H, ZHANGZ, et al. Path planning algorithm based on improved artificial potential field method in dynamic environment[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(12): 6-9, 14. (in Chinese)
|
14 |
TRAUTMANP, KRAUSEA. Unfreezing the robot: Navigation in dense, interacting crowds[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 797-803.
|
15 |
HELBINGD, MOLNÁRP. Social force model for pedestrian dynamics[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286.
|
16 |
SUTTONR S, BartoA G. Reinforcement learning: An introduction[M]. MIT press, 2018.
|
17 |
PUTERMANM L. Markov Decision Processes: Discrete Stochastic Dynamic Programming[M]. Hoboken: John Wiley & Sons, 1994.
|
18 |
PENGP, ZHUF, LIUQ, et al. Achieving safe deep reinforcement learning via environment comprehension mechanism[J]. Chinese Journal of Electronics, 2021, 30(6): 1049-1058.
|
19 |
VODOPIVECT, SAMOTHRAKISS, STERB. On Monte Carlo tree search and reinforcement learning[J]. Journal of Artificial Intelligence Research, 2017, 60: 881-936.
|
20 |
SILVERD, HUANGA, MADDISONC J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
|
21 |
KEARNSM, MANSOURY, NGA Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes[J].Machine Learning, 2002, 49(2/3): 193-208.
|
22 |
SILVERD, SCHRITTWIESERJ, SIMONYANK, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.
|
23 |
LILLICRAPT P, HUNTJ J, PRITZELA, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint, arXiv:, 2015.
|
24 |
黄志清, 曲志伟, 张吉, 等. 基于深度强化学习的端到端无人驾驶决策[J]. 电子学报, 2020, 48(9): 1711-1719.
|
|
HUANGZ Q, QUZ W, ZHANGJ, et al. End-to-end autonomous driving decision based on deep reinforcement learning[J]. Acta Electronica Sinica, 2020, 48(9): 1711-1719. (in Chinese)
|
25 |
CHENX, LIZ, WANGK, et al. MDP-based network selection with reward optimization in HetNets[J]. Chinese Journal of Electronics, 2018, 27(1): 183-190.
|
26 |
COULOMR. Efficient selectivity and backup operators in Monte-Carlo tree search[C]//International Conference on Computers and Games. Turin, Italy: Springer, 2007: 72-83.
|
27 |
CHASLOTG, BAKKESS, SZITAI, et al. Monte-Carlo tree search: A new framework for game AI[C]//Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Palo Alto, California, USA: The AAAI Press. 2008, 4(1): 216-217.
|
28 |
BROWNEC B, POWLEYE, WHITEHOUSED, et al. A survey of monte carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in games, 2012, 4(1): 1-43.
|
29 |
KRONBERGERG, BRAUNER. Bandit-based Monte-Carlo planning for the single-machine total weighted tardiness scheduling problem[C]//International Conference on Computer Aided Systems Theory. Las Palmas de Gran Canaria, Spain: Springer, 2007: 837-844.
|
30 |
ZHANGJ J, LIUH Y, CHANGQ, et al. Recurrent neural network for motion trajectory prediction in human-robot collaborative assembly[J]. CIRP Annals, 2020, 69(1): 9-12.
|
31 |
徐诚, 何昊, 段世红, 等. 一种基于深度蒙特卡洛树搜索的信源导航方法及装置: 202110316103.9[P].2021.
|
32 |
DENKERA, İŞERIM C. Design and implementation of a semi-autonomous mobile search and rescue robot: SALVOR[C]//2017 International Artificial Intelligence and Data Processing Symposium (IDAP). Malatya, Turkey: IEEE, 2017: 1-6.
|
33 |
方朋朋, 杨家富, 施杨洋, 等. 基于梯度下降法和改进人工势场法的无人车避障方法[J]. 制造业自动化, 2018, 40(11):81-84.
|
|
FANGP P, YANGJ F, SHIY Y, et al. Gradient descent method and improved artificial potential field method for obstacle avoidance of unmanned vehicle[J]. Manufacturing Automation, 2018, 40(11): 81-84. (in Chinese)
|
34 |
VISERASA, SHUTIND, MERINOL. Robotic active information gathering for spatial field reconstruction with rapidly-exploring random trees and online learning of Gaussian processes[J]. Sensors(Basel, Switzerland), 2019, 19(5): 1016.
|