1 |
ZHAOY, ZHANGM, ZHAOY, GENGX. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4250-4258.
|
2 |
LIUP, JINY. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3132-3144.
|
3 |
NEWEYM, BENITZG R, BARRETTD J, et al. Detection and imaging of moving targets with LiMIT SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3499-3510.
|
4 |
KRIZHEVSKYA, SUTSKEVERI, HINTONG E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105.
|
5 |
张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841-851.
|
|
ZHANGXiao-ling, ZHANGTian-wen, SHIJun, et al. High-speed and High-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841-851. (in Chinese)
|
6 |
杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41(09): 1990-1997.
|
|
YANGLong, SUJuan, LIXiang. Ship detection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(09): 1990-1997. (in Chinese)
|
7 |
杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(01): 34-54.
|
|
DULan, WANGZhao-cheng, WANGYan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(01): 34-54. (in Chinese)
|
8 |
ZHANGZ, WANGH, XUF, et al. Complex- valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177-7188.
|
9 |
YUL, HUY, XIEX, et al. Complex-valued full convolutional neural network for SAR target classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1752-1756.
|
10 |
TANX, LIM, ZHANGP, et al. Complex-valued 3-D convolutional neural network for PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1022-1026.
|
11 |
SUNAGAY, NATSUAKIR, HIROSEA. Land form classification and similar land-shape discovery by using complex-valued convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7907-7917.
|
12 |
GAOJ, DENGB, QINY, et al. Enhanced radar imaging using a complex-valued convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 35-39.
|
13 |
蔡彦宁, 种劲松. 舰船目标三维转动SAR成像仿真研究[J]. 计算机仿真, 2011, 28(03): 287-291, 364.
|
|
CAIYan-ning, ZHONGJin-song. SAR imaging simulation for three-dimensional rotations of ship targets[J]. Computer Simulation, 2011, 28(03): 287-291, 364. (in Chinese)
|
14 |
KUROEY, YOSHIDM, MORIT. On activation functions for complex-valued neural networks-existence of energy functions[C]//Artificial Neural Networks and Neural Information Processing. Heidelberg, Berlin: Springer, 2003: 985-992.
|
15 |
HIROSEA. Complex-valued neural networks: theories and applications[M]. Singapore: World Scientific, 2003.
|
16 |
ILIEVA, KYURKCHIEVN, MARKOVS. On the approximation of the step function by some sigmoid functions[J]. Mathematics and Computers in Simulation, 2017, 133:223-234.
|
17 |
NAIRV, HINTONG E. Rectified linear units improve restricted Boltzmann machines[C]//27th International Conference on Machine Learning. Haifa, Israel: ICML, 2010: 1-8.
|
18 |
项鹏, 郭炜炜, 张增辉,等. 面向SAR解译的OpenSAR数据开放共享平台[J]. 信息技术, 2016, (09): 1-4, 9.
|
|
XIANGPeng, GUOWei-wei, LIZeng-hui, et al. An open platform of SAR database for SAR image interpretation[J]. Information Technology, 2016, (09): 1-4, 9. (in Chinese)
|
19 |
ZHANGY, HUAQ, XUD, et al. A complex-valued convolutional neural network with different activation functions in polarimetric SAR image classification[C]// 2019 International Radar Conference. Toulon, France: IEEE, 2019: 1-4.
|
20 |
SIMONYANK, ZISSERMANA. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2014]. .
|
21 |
HEK, ZHANGX, RENS, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America: IEEE, 2016: 770-778.
|