1 |
王忠伟, 陈叶芳, 钱江波, 等. 基于LSH的高维大数据k近邻搜索算法[J]. 电子学报, 2016, 44(4): 906‐912.
|
|
WANG Zhong-wei, CHEN Yie-fang, QIAN Jiang-bo, et al. LSH-Based algorithm for k nearest neighbor search on big data[J]. Acta Electronica Sinica, 2016, 44(4): 906‐912. (in Chinese)
|
2 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 248‐255.
|
3 |
WANG G Y, YANG J, XU J. Granular computing: from granularity optimization to multi-granularity joint problem solving[J]. Granular Computing, 2017, 2(3): 105‐120.
|
4 |
YAO J T, VASILAKOS A V, et al. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1977‐1989.
|
5 |
BARGIELA A, PEDRYCZ W. Toward a theory of granular computing for human-centered information processing[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(2): 320 ‐330.
|
6 |
胡清华, 王煜, 周玉灿, 等. 大规模分类任务的分层学习方法综述[J]. 中国科学: 信息科学, 2018, 48(5): 487‐500.
|
|
HU Q H, WANG Y, ZHOU Y C, et al. A review on hierarchical learning methods for large scale classification task[J]. Scientia Sinica Informationis, 2018, 48(5): 487‐500. (in Chinese)
|
7 |
GUO S X, ZHAO H. Hierarchical classification with multi-path selection based on granular computing[J]. Artificial Intelligence Review, 2021, 54(3): 2067‐2089.
|
8 |
SILLA C N, FREITAS A A. A survey of hierarchical classification across different application domains[J]. Data Mining and Knowledge Discovery, 2011, 22(1-2): 31‐72.
|
9 |
FREEMAN C, KULIC D, BASIR O. Joint feature selection and hierarchical classifier design[C]//Proceedings of the International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Press, 2011: 1728‐1734.
|
10 |
GRIMAUDO L, MELLIA M, BARALIS E. Hierarchical learning for fine grained internet traffic classification[C]//Proceedings of International Wireless Communications and Mobile Computing Conference. Piscataway: IEEE Press, 2012: 463‐468.
|
11 |
SONG J, ZHANG P Z, QIN S J, et al. A method of the feature selection in hierarchical text classification based on the category discrimination and position information[J]. IEEE Transactions on Engineering Management, 2015, 53(4): 555‐569.
|
12 |
ZHAO H, HU Q H, ZHU P F, et al. A recursive regularization based feature selection framework for hierarchical classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(7): 2833‐2846.
|
13 |
TUO Q J, ZHAO H, HU Q H. Hierarchical feature selection with subtree based graph regularization[J]. Knowledge Based Systems, 2018, 163(1): 996‐1008.
|
14 |
白盛兴, 林耀进, 王晨曦, 等. 基于邻域粗糙集的大规模层次分类在线流特征选择[J]. 模式识别与人工智能, 2019, 32(9): 811‐820.
|
|
BAI Shengxing, LIN Yaojin, WANG Chenxi, et al. Large-scale hierarchical classification online streaming feature selection based on neighborhood rough set[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(9): 811‐820. (in Chinese)
|
15 |
LIU X X, ZHOU Y C, ZHAO H. Robust hierarchical feature selection driven by data and knowledge[J]. Information Sciences, 2021, 551: 341‐357.
|
16 |
KOSMOPOULOS A, PARTALAS I, GAUSSIER É, et al. Evaluation measures for hierarchical classification: a unified view and novel approaches[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 820‐865.
|
17 |
刘洪涛, 李航, 王进, 等. 基于标签特定特征的多目标回归稀疏集成方法[J]. 电子学报, 2020, 48(5): 906‐913.
|
|
LIU Hong-tao, LI Hang, WANG Jin, et al. Multi-target regression via sparse integration and label-specific features[J]. Acta Electronica Sinica, 2016, 48(5): 906‐912. (in Chinese)
|
18 |
ARGYRIOU A, EVGENIOU T, PONTIL M. Multi-task feature learning[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 41‐48.
|
19 |
GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with hilbert-Schmidt norms[C]//Proceedings of the International Conference on Algorithmic Learning Theory. Berlin: Springer, 2005: 63‐77.
|
20 |
NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint L2, 1-norms minimization[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2010: 1813‐1821.
|
21 |
GU Q Q, LI Z H, HAN J W. Generalized fisher score for feature selection[C]//Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence. Virginia: AUAI Press, 2011: 266‐273.
|
22 |
FRIEDMAN M. A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics, 1940, 11(1): 86‐92
|
23 |
DUNN O J. Multiple comparisons among means[J]. Journal of the American Statistical Association, 1961, 56(293): 52‐64
|
24 |
DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1): 1‐30
|
25 |
WEI L Y, LIAO M H, GAO X, et al. An improved protein structural prediction method by incorporating both sequence and structure information[J]. IEEE Transactions on NanoBioscience, 2015, 14(4): 339‐349.
|