1 |
TEINEMAA I, DUMAS M, ROSA M L, et al. Outcome-oriented predictive process monitoring: Review and benchmark[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(2): 17.
|
2 |
TAX N, VERENICH I, LA ROSA M, et al. Predictive business process monitoring with LSTM neural networks[C]//International Conference on Advanced Information Systems Engineering. Aachen: Springer, 2017: 477-492.
|
3 |
VAN DER AALST W P M, SCHONENBERG M H, SONG M. Time prediction based on process mining[J]. Information Systems, 2011, 36(2): 450-475.
|
4 |
赵海燕, 李帅标, 陈庆奎, 等. 面向业务过程的时间预测方法[J]. 小型微型计算机系统, 2019, 40(2): 42-48.
|
|
ZHAO Hai-yan, LI Shuai-biao, CHEN Qing-kui, et al. Method of time prediction for business process[J]. Journal of Chinese Computer Systems, 2019, 40(2): 42-48. (in Chinese)
|
5 |
ROGGE-SOLTI A, WESKE M. Prediction of business process durations using non-Markovian stochastic petri nets[J]. Information Systems, 2015, 54: 1-14.
|
6 |
NAVARIN N, VINCENZI B, POLATO M, et al. LSTM networks for data-aware remaining time prediction of business process instances[C]//IEEE Symposium Series on Computational Intelligence. Hawaiian: IEEE, 2017: 1-7.
|
7 |
LEONTJEVA A, CONFORTI R, DI FRANCESCOMARINO C, et al. Complex symbolic sequence encodings for predictive monitoring of business processes[C]//International Conference on Business Process Management. Dubai: Springer, 2016: 297-313.
|
8 |
FOLINO F, GUARASCIO M, PONTIERI L. Mining predictive process models out of low-level multidimensional logs[C]//International Conference on Advanced Information Systems Engineering. Luxembourg: Springer, 2014: 533-547.
|
9 |
崔亮. 基于机器学习的业务流程系统的预测[D]. 北京: 北京邮电大学, 2019.
|
10 |
POLATO M, SPERDUTI A, BURATTIN A, et al. Time and activity sequence prediction of business process instances[J]. Computing, 2018, 100(9): 1005-1031.
|
11 |
VERENICH I, NGUYEN H, LA ROSA M, et al. White-box prediction of process performance indicators via flow analysis[C]//Proceedings of the 2017 International Conference on Software and System Process. Paris: ACM, 2017: 85-94.
|
12 |
EVERMANN J, REHSE J, FETTKE P. A deep learning approach for predicting process behaviour at runtime[C]//Business Process Management Workshops. Rio de Janeiro: Springer, 2016: 327-388.
|
13 |
NGUYEN A, CHATTERJEE S, WEINZIERL S, et al. Time matters: Time-aware LSTMs for predictive business process monitoring[C]//International Workshop on Leveraging Machine Learning in Process Mining. Padua: ICPM, 2020: 1-12.
|
14 |
倪维健, 孙宇健, 刘彤, 等. 基于注意力双向循环神经网络的业务流程剩余时间预测方法[J]. 计算机集成制造系统, 2020, 26(6): 1564-1572.
|
|
NI Wei-jian, SUN Yu-jian, LIU Tong, et al. Business process remaining time prediction using bidirectional recurrent neural networks with attention[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1564-1572. (in Chinese)
|
15 |
KHAN A, LE H, DO K, et al. DeepProcess: Supporting business process execution using a MANN-based recommender system[EB/OL]. (2018)[2021]. .
|
16 |
PASQUADIBISCEGLIE V, APPICE A, CASTELLANO G, et al. Using convolutional neural networks for predictive process analytics[C]//International Conference on Process Mining, Aachen: ICPM, 2019: 29-136.
|
17 |
TAYMOURI F, ROSA M L. Encoder-decoder generative adversarial nets for suffix generation and remaining time predication of business process models[EB/OL].(2020)[2021]. .
|
18 |
BUKHSH Z A, SAEED A, DIJKMAN R M. ProcessTransformer: Predictive business process monitoring with transformer network[EB/OL]. (2021)[2021]. .
|
19 |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013)[2021]. .
|
20 |
BRADBURY J, MERITY S. Quasi-recurrent neural networks[EB/OL]. (2019)[2021]. .
|
21 |
王栋, 李业刚, 张晓, 等. 基于准循环神经网络的中文命名实体识别[J]. 计算机工程与设计, 2020, 41(7): 2038-2043.
|
|
WANG Dong, LI Ye-gang, ZHANG Xiao, et al. Chinese name entity recognition based on quasi-recurrent neural networks[J]. Computer Engineering and Design, 2020, 41(7): 2038-2043. (in Chinese)
|
22 |
时云龙, 袁文浩, 胡少东, 等. 一种用于实时语音增强的卷积准循环网络[J]. 西安电子科技大学学报, 2022, 49(3): 1-8.
|
|
Shi Yun-long, Yuan Wen-hao, Hu Shao-dong, et al. Convolutional quasi-recurrent network for real-time speechenhancement[J]. Journal of Xidian University, 2022, 49(3):1-8. (in Chinese)
|
23 |
DONGEN VAN. Bpi2012[OL]. .
|
24 |
VERENICH IlYA. Helpdesk[OL]. .
|
25 |
MANNHARDT FELIX. Hospital Billing[OL]. .
|