1 |
BAI L, LYU Y, HUANG X. RoadNet-RT: High throughput CNN architecture and SoC design for real-time road segmentation[J]. IEEE Transactions on Circuits and Systems I, 2021, 68(2): 704-714.
|
2 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105.
|
3 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
4 |
刘杰, 葛一凡, 田明, 马力强. 基于ZYNQ的可重构卷积神经网络加速器[J]. 电子学报, 2021, 49(4): 729-735.
|
|
LIU Jie, GE Yi-fan, TIAN Ming, MA Li-qiang. Reconfigurable convolutional network accelerator based on ZYNQ[J]. Acta Electronica Sinica, 2021, 49(4): 729-735. (in Chinese)
|
5 |
LIANG S, YIN S, LIU L, et al. Acoarse-grained reconfigurable architecture for compute-intensive mapreduce acceleration[J]. IEEE Computer Architecture Letters, 2016, 15 (2): 69-72.
|
6 |
YU Y, WU C, ZHAO T, et al.OPU: An FPGA-based overlay processor for convolutional neural networks[J]. IEEE Transactions on Very Large-Scale Integration(VLSI) Systems, 2020, 28 (1): 35-47.
|
7 |
ZHANG C, ZHENMAN F, PEIPEI Z, et al. Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks[C]//IEEE/ACM International Conference on Computer-Aided Design(ICCAD). Austin: IEEE, 2016: 1-8.
|
8 |
GUO J, YIN S, OUYANG P, et al. Bit-width based resource partitioning for CNN acceleration on FPGA[C]//IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM).Napa:IEEE, 2017: 31-31.
|
9 |
ALBERICIO J, JUDD P, HETHERINGTON T, et al. Cnvlutin: Ineffectual-neuron-freedeep neural network computing[C]//IEEE 43th International Symposium on Computer Architecture. Seoul: IEEE, 2016: 1-13.
|
10 |
MA Y, CAOY, VRUDHULA S, et al. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks[C]//ACM/Sigda International Symposium on Field-programmable Gate Arrays. Monterey: ACM, 2017:45-54.
|
11 |
LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//26th International Conference on Machine Learning. Montreal: ACM, 2009: 609-616.
|
12 |
KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Computer Vision & Pattern Recognition. Columbus: IEEE, 2014: 1725-1732.
|
13 |
YU D, DENG L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine,2011, 28 (1): 145-154.
|
14 |
CONG J, XIAO B. Minimizing computation in convolutional neural networks[C]//International Conference on Artificial Neural Networks. Hamburg: Springer, Cham, 2014: 281-290.
|
15 |
LI Y, MA S, GUO Y, et al. Configurable CNN accelerator based on tiling dataflow[C]//2018 IEEE 9th International Conference on Software Engineering and Service Science(ICSESS). Beijing: IEEE, 2018: 309-313.
|
16 |
SHANG J W, QIAN L, ZHANG Z, et al.LACS: A high-computational-efficiency accelerator for CNNs[J]. IEEE Access, 2020, 8: 6045-6059.
|
17 |
ZHU C, HUANG K, YANG S, et al. Anefficient hardware accelerator for structured sparse convolutional neural networks on FPGAs[J]. IEEE Transactions on Very Large-Scale Integration(VLSI) Systems,2020, 28 (9): 1953-1965.
|
18 |
LIANG Y, LU L Q, XIE J M. OMNI: A framework for integrating hardware and software optimizations for sparse CNNs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40 (8): 1648-1661.
|