1 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
|
|
FU Shi-yi, LV Tao-lin, MIN Fan-qi, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J].Energy Storage Science and Technology, 2021, 10(3): 1127-1136. (in Chinese)
|
2 |
WANG Yu-jie, TIAN Jia-qiang, SUN Zhen-dong, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. DOI: 10.1016/j.rser.2020.110015 .
|
3 |
张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803-1815.
|
|
Zhang Zhao-wei, GUO Tian-zi, GAO Ming-yu, et al. Review of socestimation methods for electric vehicle li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815. (in Chinese)
|
4 |
HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.
|
5 |
Hu Xiao-song, Feng Fei, Liu Kai-long, et al. State estimation for advanced battery management: Key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334.
|
6 |
HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: 126044. DOI: 10.1016/j.jclepro. 2021. 126044 .
|
7 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. Long short-term memory networks for accurate state-of-charge estimation of li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6730-6739.
|
8 |
LI Chao-ran, XIAO Fei, FAN Ya-xiang. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit[J]. Energies, 2019, 12(9): 1592.
|
9 |
HANNAN M A, HOW D N T, LIPU M S H, et al. SOC estimation of li-ion batteries with learning rate-optimized deep fully convolutional network[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7349-7353.
|
10 |
HUANG Zhe-lin, YANG Fang-fang, XU Fan, et al. Convolutional gated recurrent unit-recurrent neural network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 93139-93149.
|
11 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc, 2017: 6000-6010.
|
12 |
ZHOU Hao-yi, ZHANG Shang-hang, PENG Jie-qi, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the 35th Association for the Advancement of Artificial Intelligence (AAAI). New York: AAAI, 2021: 11106-11115.
|
13 |
GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//Proceedings of the 34th International Conference on Machine Learning - Volume 70. Sydney: JMLR.org, 2017: 1243-1252.
|
14 |
FRANKLE J, CARBIN M. The lottery ticket hypothesis: Finding sparse, trainable neural networks[C]//International Conference on Learning Representations(ICLR). New Orleans: OpenReview.net, 2019.
|
15 |
VidalC, Kollmeyer P, Chemali E, et al. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). New York: IEEE, 2019: 1-6.
|
16 |
HANNAN M A, HOW D N T, LIPU M S H, et al. Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model[J]. Sci Rep, 2021, 11(1): 19541.
|