电子学报 ›› 2023, Vol. 51 ›› Issue (1): 180-191.DOI: 10.12263/DZXB.20211671

• 学术论文 • 上一篇    下一篇

Mobile_BLNet:基于Big-Little Net的轻量级卷积神经网络优化设计

袁海英, 成君鹏, 曾智勇, 武延瑞   

  1. 北京工业大学信息学部,北京 100124
  • 收稿日期:2021-12-18 修回日期:2022-03-07 出版日期:2023-01-25
    • 作者简介:
    • 袁海英 女,1976年出生于四川阆中.北京工业大学信息学部副教授.主要研究方向为面向人工智能应用的高能效计算芯片系统、面向信号检测与信息处理的嵌入式系统、电子系统容错与通信总线技术.E-mail: yhycn@126.com
      成君鹏 男,1995年出生于江苏盐城.北京工业大学信息学部硕士研究生.主要研究方向为轻量级卷积神经网络建模技术.E-mail: chengjp@emails.bjut.edu.cn
      曾智勇 男,1997年出生于北京.北京工业大学信息学部硕士研究生.主要研究方向为基于FPGA的卷积神经网络加速器架构设计.E-mail: m_x_zy@126.com
      武延瑞 男,1996年出生于河北衡水.北京工业大学信息学部硕士研究生.主要研究方向为医学影像智能处理技术.E-mail: 15226525376@163.com
    • 基金资助:
    • 国家自然科学基金 (61001049); 北京市自然科学基金 (4172010)

Mobile_BLNet: Optimization Design of Lightweight Convolutional Neural Network Based on Big-Little Net

YUAN Hai-ying, CHENG Jun-peng, ZENG Zhi-yong, WU Yan-rui   

  1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2021-12-18 Revised:2022-03-07 Online:2023-01-25 Published:2023-02-23
    • Supported by:
    • National Natural Science Foundation of China (61001049); Beijing Municipal Natural Science Foundation (4172010)

摘要:

针对深度卷积神经网络难以部署到资源受限的端侧设备这一问题,本文提出一种高效精简的轻量化卷积神经网络Mobile_BLNet,在模型规模、计算量和性能之间取得了良好的平衡.该网络引入深度可分离卷积和倒残差结构,通过合理分配不同分支的运算量缩减模型规模并节省大量计算资源;采用通道剪枝操作压缩网络模型,基于占总和比值方法裁剪对模型贡献度低的卷积通道,在相同压缩效果情况下提升了分类准确率;基于通道裁剪情况重构网络,进一步降低模型所需计算资源.实验结果表明,Mobile_BLNet结构精简、性能优异,在CIFAR-10/CIFAR-100数据集上以0.1 M/0.3 M参数量、9.6 M/12.7 M浮点计算量获得91.2%/71.5%分类准确率;在Food101/ImageNet数据集上以1.0 M/2.1 M参数量、203.0 M/249.6 M浮点计算量获得82.8%/70.9%分类准确率,满足轻量化卷积神经网络的端侧硬件高能效部署需求.

关键词: 轻量化设计, 卷积神经网络, 模型重构, 剪枝操作, 深度学习

Abstract:

Since it is difficult for deep convolutional neural network to be deployed to terminal equipment with limited resources, this paper proposes an efficient, compact, and lightweight network Mobile_BLNet, which achieves a good balance between model size, computation, and performance. The network uses depthwise separable convolution and inverse residual structure, reduces the scale of the model and saves a lot of computing resources by reasonably allocating the amount of computation of different branches. The total ratio method is used to prune the convolution channel with low contribution, which has excellent performance under the same compression effect. Model reconstruction is based on the clipping, which further reduces the computational resources. The experimental results show that Mobile_BLNet has excellent performance. On CIFAR-10/CIFAR-100 dataset, 91.2%/71.5% accuracy is obtained with 0.1 M/0.3 M parameters and 9.6 M/12.7 M floating point operations. On Food101/ImageNet dataset, 82.8%/70.9% accuracy is obtained with 1.0 M/2.1 M parameters and 203.0 M/249.6 M floating point operations. The network meets the requirements of energy-efficient and lightweight hardware deployment.

Key words: lightweight design, convolutional neural network, model reconstruction, pruning operation, deep learning

中图分类号: