1 |
SHORP. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science. Los Alamitos, CA: IEEE Computer Society Press, 1994:124-134.
|
2 |
GROVERL K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th Annual ACM Symposium on Theory of Computing. PA, USA: ACM Press, 1996: 212-219.
|
3 |
BUSCHP, HEINONENT, LAHTIP. Heisenberg's uncertainty principle[J]. Physiological Reports, 2007, 452(6): 155-176.
|
4 |
WOOTTERW K, ZUREKW H. A single quantum cannot be cloned[J]. Nature, 1982, 299(5886): 802-803.
|
5 |
BENNETTC H, BRASSARDBG. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560(1): 7-11.
|
6 |
宋云. 基于GHZ 态局域测量的量子秘密共享[J]. 电子学报, 2019, 47(7): 1443-1448.
|
|
SONGYun. Quantum secret sharing based on GHZ states local measurements[J]. Acta Electronica Sinica, 2019, 47(7): 1443-1448. (in Chinese)
|
7 |
宋秀丽, 曹耘凡, 杨帅. 基于d维三粒子纠缠态的量子投票表决方案[J]. 电子学报, 2020, 48(7): 1355-1360.
|
|
SONGXiu-li, CAOYun-fan, YANGShuai. Quantum voting scheme based on d dimensional three-particle entangled state[J]. Acta Electronica Sinica, 2020, 48(7): 1355-1360. (in Chinese)
|
8 |
BENNETTC H, BRASSARDG, MERMINN D. Quantum cryptography without Bell's theorem[J]. Physical Review Letters, 1992, 68(5): 557.
|
9 |
VAHIDK, ALIREZAB, SABERB. Quantum key distribution for d-level systems with generalized Bell states[J]. Physical Review A, 2002, 65(5): 05233.
|
10 |
BOYERM, KENIGSBERGD, MOR T. Quantum key distribution with classical Bob[J]. Physical Review Letters, 2007, 99(14): 140501.
|
11 |
BOYERM, GELLESR, KENIGSBERGD, MOR T. Semiquantum key distribution[J]. Physical Review A, 2009, 79(3): 032341.
|
12 |
ZOUX F, QIUD W, LIL Z, et al. Semiquantum key distribution using less than four quantum states[J]. Physical Review A, 2009, 79(5): 052312.
|
13 |
ZHANGX Z, GONGW G, TANY G, et al. Quantum key distribution series network protocol with m-classical Bobs[J]. Chinese Physics B, 2009, 18(6): 2143-2148.
|
14 |
WANGJ, ZHANGS, ZHANGQ, TANGC J. Semiquantum key distribution using entangled states[J]. Chinese Physics Letters, 2011, 28(10): 100301.
|
15 |
KRAWECW O. Restricted attacks on semi-quantum key distribution protocols[J]. Quantum Information Processing, 2014, 13(11): 2417-2436.
|
16 |
YUK F, YANGC W, LIAOC H, HWANGT. Authenticated semi-quantum key distribution protocol using bell states[J]. Quantum Information Processing, 2014, 13(6): 1457-1465.
|
17 |
ZOUX F, QIUD W, ZHANGS Y, MATEUSP. Semiquantum key distribution without invoking the classical party's measurement capability[J]. Quantum Information Processing, 2015, 14(8): 2981-2996.
|
18 |
KRAWECW O. Mediated semi-quantum key distribution[J]. Physical Review A, 2015, 91(3): 032323.
|
19 |
YANGY G, SUNS J, ZHAOQ Q. Trojan-horse attacks on quantum key distribution with classical Bob[J]. Quantum Information Processing, 2015, 14(2): 681-686.
|
20 |
BOYERM, KATZM, LISSR, MOR T. Experimentally feasible protocol for semiquantum key distribution[J]. Physical Review A, 2017, 96(6), 062335.
|
21 |
BOYERM, LISSR, MOR T. Attacks against a simplified experimentally feasible semiquantum key distribution protocol[J]. Entropy, 2018, 20(7): 536.
|
22 |
LIUZ R, HWANGT. Mediated semi-quantum key distribution without invoking quantum measurement[J]. Annals of Physics, 2018, 530(4): 1700206.
|
23 |
LINP H, TSAIC W, HWANGT. Mediated semi-quantum key distribution using single photons[J]. Annals of Physics, 2019, 531(8): 1800347.
|
24 |
WANGM M, GONGL M, SHAOL H. Efficient semiquantum key distribution without entanglement[J]. Quantum Information Processing, 2019, 18(9): 260.
|
25 |
YET Y, LIH K, HUJ L. Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom[J]. International Journal of Theoretical Physics, 2020, 59(9): 2807-2815.
|
26 |
CHENL L, LIQ, LIUC D, et al. Efficient mediated semi-quantum key distribution[J]. Physica A, 2021, 582: 126265.
|
27 |
CERFN J, BOURENNANEM, KARLSSONA, GISINN. Security of quantum key distribution using d-level systems[J]. Physical Review Letters, 2002, 88(12): 127902.
|
28 |
SHERUDANL, SCARANIV. Security proof for quantum key distribution using qudit systems[J]. Physical Review A, 2010, 82(3): 030301.
|
29 |
DINGY H, BACCOD, DALGAARDK. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits[J]. NPJ Quantum Information, 2017, 3(1): 25.
|
30 |
YANX Y, ZHOUN R, GONGL H, et al. High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform[J]. Quantum Information Processing, 2019, 18(9): 271.
|
31 |
HUW W, ZHOUR G, LIX, et al. A novel dynamic quantum secret sharing in high-dimensional quantum system[J]. Quantum Information Processing, 2021, 20(5): 159.
|
32 |
DEUTSCHD, EKERTA, JOZSAR, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Physical Review Letters, 1996, 77(13): 2818-2821.
|
33 |
BENNETTC H, BRASSARDG, CREPEAUC, MAURERU M. Generalized privacy amplification[J]. IEEE Transactions on Information Theory, 1995, 41(6): 1915-1923.
|
34 |
LOH K, CHAUH F, ARDEHALIM. Efficient quantum key distribution scheme and a proof of its unconditional security[J]. Journal of Cryptology, 2005, 18(2): 133-165.
|
35 |
CAIQ Y. Eavesdropping on the two-way quantum communication protocols with invisible photons[J]. Physics Letters A, 2006, 351(1-2): 23-25.
|
36 |
YANGY G, SUNS J, ZHAOQ Q. Trojan-horse attacks on quantum key distribution with classical Bob[J]. Quantum Information Processing, 2015, 14(2): 681-686.
|