1 |
国家互联网应急中心. 2021年第2期网络安全信息与动态周报[R/OL]. (2021-01-13)[2021-12-23]. .
|
2 |
ALAZAB M. Profiling and classifying the behavior of malicious codes[J]. Journal of Systems and Software, 2015, 100: 91-102.
|
3 |
VENKATRAMAN S, ALAZAB M. Use of data visualization for zero-day malware detection[J]. Security and Communication Networks, 2018, 2018: 1-13.
|
4 |
CONTI G, BRATUS S, et al. Automated mapping of large binary objects using primitive fragment type classification[J]. Digital Investigation, 2010, 7: S3-S12.
|
5 |
NATARAJ L, KARTHIKETAN S, et al. Malware images: Visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York: ACM, 2011: 1-7.
|
6 |
韩晓光, 曲武, 等. 基于纹理指纹的恶意代码变种检测方法研究[J]. 通信学报, 2014, 35(8): 125-136.
|
|
HAN X G, QU W, et al. Research on malicious code variants detection based on texture fingerprint[J]. Journal on Communications, 2014, 35(8): 125-136. (in Chinese)
|
7 |
NATARAJ L, YEGNESWARAN V, PORRAS P, et al. A comparative assessment of malware classification using binary texture analysis and dynamic analysis[C]//Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence. New York: ACM, 2011: 21-30.
|
8 |
汪嘉来, 张超, 戚旭衍, 等. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994.
|
|
WANG J L, et al. A survey of intelligent malware detection on windows platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994. (in Chinese)
|
9 |
任卓君, 陈光, 卢文科. 基于N-gram特征的恶意代码可视化方法[J]. 电子学报, 2019, 47(10): 2108-2115.
|
|
RENG Z J, CHEN G, LU W K. Malware visualization methods based on n-gram features[J]. Acta Electronica Sinica, 2019, 47(10): 2108-2115. (in Chinese)
|
10 |
NATARAJ L, MANJUNATH B S. SPAM: Signal processing to analyze malware[J]. IEEE Signal Processing Magazine, 2016, 33: 105-117.
|
11 |
KANCHERLA K, MUKKAMALA S. Image visualization based malware detection[C]//2013 IEEE Symposium on Computational Intelligence in Cyber Security. Singapore: IEEE, 2013: 40-44.
|
12 |
刘亚姝, 王志海, 等. 抗混淆的恶意代码图像纹理特征描述方法[J]. 通信学报, 2018, 39(11): 44-53.
|
|
LIU Y S, WANG Z H, et al. Method of anti-confusion texture feature descriptor for malware images[J]. Journal on Communications, 2018, 39(11): 44-53. (in Chinese)
|
13 |
NAEEM H, GUO B, NAEEM M R, et al. Identification of malicious code variants based on image visualization[J]. Computers & Electrical Engineering, 2019, 76: 225-237.
|
14 |
卢喜东, 段哲民, 钱叶魁, 等. 一种基于深度森林的恶意代码分类方法[J]. 软件学报, 2020, 31(5): 1454-1464.
|
|
LU X D, DUAN Z M, QIAN Y K, et al. Malicious code classification method based on deep forest[J]. Journal of Software, 2020, 31(5): 1454-1464. (in Chinese)
|
15 |
GIBERT D, MATEU C, PLANES J, et al. Using convolutional neural networks for classification of malware represented as images[J]. Journal of Computer Virology and Hacking Techniques, 2019, 15(1): 15-28.
|
16 |
DANISH V, MAMOUN A, SOBIA W, et al. IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture[J]. Computer Networks, 2020, 171: 107138.
|
17 |
KABANGA E K, KIM C H. Malware images classification using convolutional neural network[J]. Journal of Computer and Communications, 2018, 6(1): 153-158.
|
18 |
CUI Z H, XUE F, CAI X, et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3187-3196.
|
19 |
CUI Z H, LEI D, et al. Malicious code detection based on CNNs and multi-objective algorithm[J]. Journal of Parallel and Distributed Computing, 2019, 129: 50-58.
|
20 |
HU J, SHEN L, ALBANIE S, et al. Squeeze and excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
21 |
奇安信技术研究院. DataCon: 面向安全研究的多领域大规模竞赛开放数据[EB/OL]. (2021-11-11)[2021-12-23]. .
|
22 |
LI Q, MI J, LI W, et al. CNN-based malware variants detection method for internet of things[J]. IEEE Internet of Things Journal, 2021, 8(23): 16946-16962.
|
23 |
SUDHAKAR K S. MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in internet of things[J]. Future Generation Computer Systems, 2021, 125: 334-351.
|
24 |
DANISH V, MAMOUN A, SOBIA W, et al. Image-based malware classification using ensemble of CNN architectures (IMCEC)[J]. Computers & Security, 2020, 92: 101748.
|
25 |
杨望, 高明哲, 蒋婷. 一种基于多特征集成学习的恶意代码静态检测框架[J]. 计算机研究与发展, 2021, 58(5): 1021-1034.
|
|
YANG W, GAO M Z, JIANG T. A malicious code static detection framework based on multi-feature ensemble learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1021-1034. (in Chinese)
|
26 |
刘亚姝, 王志海, 侯跃然, 等. 一种基于概率主题模型的恶意代码特征提取方法[J]. 计算机研究与发展, 2019, 56(11): 2339-2348.
|
|
LIU Y S, WANG Z H, HOU Y R, et al. A method of extracting malware features based on probabilistic topic method, 2019, 56(11): 2339-2348. (in Chinese)
|
27 |
GUO H, HUANG S, ZHANG M, et al. Classification of malware variant based on ensemble learning[C]//2020 International Conference on Machine Learning for Cyber Security. Guangzhou: Springer, 2020: 125-139.
|
28 |
SAADAT S, JOSEPH R V. Malware classification using CNN-XGBoost model[C]//2020 International Conference on Advanced Computing Technology. Chennai: Springer, 2021: 192-202.
|
29 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
30 |
SIMONVAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-4-10)[2021-12-23]. .
|
31 |
HE K M, ZHAGN X Y, REN S Q, et al. Deep residual learning for image recognition[EB/OL]. (2015-04-10) [2021-12-23]. .
|
32 |
VENKATRAMAN S, ALAZAB M, VINAVAKUMAR R. A hybrid deep learning image-based analysis for effective malware detection[J]. Journal of Information Security and Applications, 2019, 47: 377-389.
|
33 |
VINITA V, SUNIL K M, SINGH V B. Multiclass malware classification via first- and second-order texture statistics[J]. Computers & Security. 2020, 97: 101895.
|
34 |
NAEEM H, ULLAH F, NAEEM M R, et al. Malware detection in industrial internet of things based on hybrid image visualization and deep learning model[J]. Ad Hoc Networks, 2020, 105: 102154.
|
35 |
WANG C, ZHAO Z, WANG F, et al. A novel malware detection and family classification scheme for IoT based on DEAM and DenseNet[J]. Security and Communication Networks, 2021, 2021: 1-16.
|
36 |
WANG S, WANG J, SONG Y F, et al. Malicious code variant identification based on multiscale feature fusion CNNs[J]. Computational Intelligence and Neuroscience, 2021, 2021: 1070586.
|