1 |
裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8): 1-13.
|
|
PEI Hong, HU Chang-hua, SI Xiao-sheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 47(12): 2449-2456. (in Chinese)
|
2 |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.
|
|
CHE Chang-chang, WANG Hua-wei, NI Xiao-mei, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312. (in Chinese)
|
3 |
牟含笑, 郑建飞, 胡昌华, 等. 基于CDBN与BiLSTM的多元退化设备剩余寿命预测[J]. 航空学报, 2022, 43(7): 325403.
|
|
MOU Han-xiao, ZHENG Jian-fei, HU Chang-hua, et al. Remaining useful life prediction of multivariate degradation equipment based on CDBN and BiLSTM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 325403. (in Chinese)
|
4 |
于倩影, 李娟, 戴洪德, 等. 基于Lasso变量选择的航空发动机相似性剩余寿命预测[J/OL]. 航空动力学报. DOI:10.13224/j.cnki.jasp.20210516 .
|
|
YU Qian-ying, LI Juan, DAI Hong-de, et al. Lasso based variable selection for similarity remaining useful life prediction of aero-engine[J/OL]. Journal of Aerospace Power. DOI:10.13224/j.cnki.jasp.20210516. (in Chinese)
|
5 |
韩淞宇, 邵海东, 姜洪开, 等. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J]. 航空学报, 2022, 43(9): 625479.
|
|
HAN Song-yu, SHAO Hai-dong, JIANG Hong-kai, et al. Intelligent fault diagnosis of aero-engine high-speed bearing using enhanced convolutional neural network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625479. (in Chinese)
|
6 |
张云, 于广, 王立平, 等. 基于性能退化数据的数控转台单子样可靠性分析[J]. 清华大学学报, 2020, 60(04): 299-305.
|
|
ZHANG Yun, YU Guang, WANG Li-ping, et al. Performance degradation data based NC rotary table reliability predictions using a single sample[J]. Journal of Tsinghua University, 2020, 60(04): 299-305. (in Chinese)
|
7 |
叶伟, 李亚平, 陈顶, 等. 基于小样本的复杂装备"虚拟总体"生成与检验模型[J]. 中国管理科学, 2015, 23(S1): 240-244.
|
|
YE Wei, LI Ya-ping, CHEN Ding, et al. Model for virtual overall producing and quality inspection of comples equipment based on small sample[J]. Chinese Journal of Manage Science, 2015, 23(S1): 240-244. (in Chinese)
|
8 |
王明磊, 原大宁, 刘宏昭. 二元Wiener过程下的小样本电主轴可靠性分析[J]. 机械科学与技术, 2017, 36(02): 279-285.
|
|
WANG Ming-lei, YUAN Da-ning, LIU Hong-zhao. Reliability analysis of motorized spindle with small sample based on two-dimensional Wiener process[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(02): 279-285. (in Chinese)
|
9 |
张晟斐, 李天梅, 胡昌华, 等. 基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J]. 航空学报, 2022, 43(8): 225708.
|
|
ZHANG Sheng-fei, LI Tian-mei, HU Chang-hua, et al. Deep convolutional generative adversarial networks based missing data generation method and its application in remaining useful life prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225708. (in Chinese)
|
10 |
JOSEY M, PANG C K, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks and Learning System, 2018, 29(9): 4065-4076.
|
11 |
JINSUNG Y, DANIEL J, MIHAELA S. Time-series generative adversarial networks[C]//Proceedings of the 2019 Conference and Workshop on Neural Information Processing Systems. Vancouver: NeurIPS, 2019: 5508-5518.
|
12 |
吴定海, 张培林, 任国全, 等. 基于支持向量的单类分类方法综述[J]. 计算机工程, 2011, 37(05): 187-189.
|
|
WU Ding-hai, ZHANG Pei-lin, REN Guo-quan, et al. Review of one-class classification method based on support vector[J]. Computer Engineering, 2011, 37(5): 187-189. (in Chinese)
|
13 |
张庆朔, 何强, 张长伦, 等.模糊多核一类支持向量机[J]. 北京建筑大学学报, 2020, 36(01): 82-90.
|
|
ZHANG Qing-shuo, HE Qiang, ZHANG Chang-lun, et al. Fuzzy multiple kernel one-class support vector machine[J]. Journal of Beijing University of Civil Engineering and Architecture, 2020, 36(01): 82-90. (in Chinese)
|
14 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proceedings of the 2008 International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1-9.
|
15 |
张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi-LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624.
|
|
ZHANG Hao, HU Chang-hua, DU Dang-bo, et al. Remaining useful life prediction method of lithium-ion battery based on Bi-LSTM network under multi-state influence[J]. Acta Electronica Sinica, 2022, 50(3): 619-624. (in Chinese)
|