电子学报 ›› 2022, Vol. 50 ›› Issue (9): 2233-2241.DOI: 10.12263/DZXB.20220090
所属专题: 微波光子与相关元件技术
王俊嘉1, 房崇宝1, Chen Lawrence R2
收稿日期:
2022-01-17
修回日期:
2022-04-12
出版日期:
2022-09-25
作者简介:
基金资助:
WANG Jun-jia1, FANG Chong-bao1, R CHEN Lawrence2
Received:
2022-01-17
Revised:
2022-04-12
Online:
2022-09-25
Published:
2022-10-26
摘要:
为了满足集成微波光子学的发展需要,随着硅基光子学的发展,硅基亚波长光栅波导被提出并受到关注.硅基亚波长光栅具备灵活度高、折射率可调等特性,主要用于实现光学滤波器、调制器、延迟线等集成微波光子学组件.本文对这类器件进行举例与讨论,并且在结尾提出对硅基亚波长光栅波导在集成微波光子学中应用的展望.
中图分类号:
王俊嘉, 房崇宝, Chen Lawrence R. 硅基亚波长光栅波导在微波光子学中的应用[J]. 电子学报, 2022, 50(9): 2233-2241.
Jun-jia WANG, Chong-bao FANG, CHEN Lawrence R . Subwavelength Grating Waveguide for Microwave Photonic Applications[J]. Acta Electronica Sinica, 2022, 50(9): 2233-2241.
Style | Q | Linewidth/pm | ER/dB |
---|---|---|---|
SWG Bragg1[ | 210~340 | 7~11 | |
SWG Bragg2[ | 8 000 | 10.97 | 23 |
SWG Bragg3[ | 11 800 | — | — |
表1 亚波长布拉格光栅滤波器相关成果
Style | Q | Linewidth/pm | ER/dB |
---|---|---|---|
SWG Bragg1[ | 210~340 | 7~11 | |
SWG Bragg2[ | 8 000 | 10.97 | 23 |
SWG Bragg3[ | 11 800 | — | — |
Ring radius/μm | FSR/nm | Average ER/dB | Average Q-factor/dB |
---|---|---|---|
15 | 9.8 | 16.0 | 355.5 |
20 | 7.3 | 15.5 | 845.9 |
25 | 5.8 | 7.1 | 1281.1 |
表2 不同半径的亚波长光栅微环谐振腔
Ring radius/μm | FSR/nm | Average ER/dB | Average Q-factor/dB |
---|---|---|---|
15 | 9.8 | 16.0 | 355.5 |
20 | 7.3 | 15.5 | 845.9 |
25 | 5.8 | 7.1 | 1281.1 |
1 | CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. |
2 | SEEDS A J, WILLIAMS K J. Microwave photonics[J]. Journal of Lightwave Technology, 2006, 24(12): 4628-4641. |
3 | IEZEKIEL S, BURLA M, KLAMKIN J, et al. RF engineering meets optoelectronics: Progress in integrated microwave photonics[J]. IEEE Microwave Magazine, 2015, 16(8): 28-45. |
4 | MARPAUNG D, YAO J, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13(2): 80-90. |
5 | SHAN W, LU L, WANG X, et al. Broadband continuously tunable microwave photonic delay line based on cascaded silicon microrings[J]. Optics Express, 2021, 29(3): 3375-3385. |
6 | CHEW S X, HUANG D, LI L, et al. Integrated microwave photonic phase shifter with full tunable phase shifting range (>360°) and RF power equalization[J]. Optics Express, 2019, 27(10): 14798-14808. |
7 | MCKAY L, MERKLEIN M, LIU Y, et al. Integrated microwave photonic true-time delay with interferometric delay enhancement based on Brillouin scattering and microring resonators[J]. Optics Express, 2020, 28(24): 36020-36032. |
8 | FAN Z Q, ZHANG W F, QIU Q, et al. Hybrid frequency-tunable parity-time symmetric optoelectronic oscillator[J]. Journal of Lightwave Technology, 2020, 38(8): 2127-2133. |
9 | ZHU N, LIU S, LIU H, et al. A novel microwave photonic filter for frequency-tripled signals[C]//2020 Asia Communications and Photonics Conference(ACP) and International Conference on Information Photonics and Optical Communications(IPOC). Beijing: IEEE, 2020: DOI:10.1364/ACPC.2020.M4A.348 . |
10 | ZHANG W F, YAO J P. Photonic integrated field-programmable disk array signal processor[J]. Nature Communications, 2020, 11(1): 406. |
11 | WANG J, GLESK I, CHEN L R. Subwavelength grating filtering devices[J]. Optics Express, 2014, 22(13): 15335-15345. |
12 | CHEN X, TSANG H K. Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides[J]. Optics Letters, 2011, 36(6): 796-798. |
13 | BOCK P, CHEBEN P, SCHMID J, et al. Subwavelength grating periodic structures in silicon-on-insulator: A new type of microphotonic waveguide[J]. Optics Express, 2010, 18(19): 20251-20262. |
14 | XU X C, SUBBARAMAN H, COVEY J, et al. Complementary metal-oxide-semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics[J]. Applied Physics Letters, 2012, 101(3): 031109. |
15 | QI F, MA Q, WANG Y, et al. Large-aperture subwavelength grating couplers[J]. Applied Optics, 2016, 55(11): 2960-2966. |
16 | DONZELLA V, SHERWALI A, FLUECKIGER J, et al. Sub-wavelength grating components for integrated optics applications on SOI chips[J]. Optics Express, 2014, 22(17): 21037-21050. |
17 | ORTEGA-MONUX A, CTYROKY J, CHEBEN P, et al. Disorder effects in subwavelength grating metamaterial waveguides[J]. Optics Express, 2017, 25(11): 12222-12236. |
18 | DONZELLA V, SHERWALI A, FLUECKIGER J, et al. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides[J]. Optics Express, 2015, 23(4): 4791-4803. |
19 | FLUECKIGER J, SCHMIDT S, DONZELLA V, et al. Sub-wavelength grating for enhanced ring resonator biosensor[J]. Optics Express, 2016, 24(14): 15672-15686. |
20 | WANG Z, XU X, FAN D, et al. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits[J]. Scientific Reports, 2016, 6(1): 24106. |
21 | MALPUECH G, KAVOKIN A, PANZARINI G, et al. Theory of photon Bloch oscillations in photonic crystals[J]. Physical Review B, 2001, 63(3): 035108. |
22 | RUAN Z S, SHEN L, ZHENG S, et al. Subwavelength grating slot(SWGS) waveguide on silicon platform[J]. Optics Express, 2017, 25(15): 18250-18264. |
23 | WANG Y, SHI W, WANG X, et al. Design of broadband subwavelength grating couplers with low back reflection[J]. Optics Letters, 2015, 40(20): 4647-4650. |
24 | YUN H, WANG Y, ZHANG F, et al. Broadband 2×2 adiabatic 3dB coupler using silicon-on-insulator sub-wavelength grating waveguides[J]. Optics Letters, 2016, 41(13): 3041-3044. |
25 | LIU L, DENG Q, ZHOU Z. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651. |
26 | XU Y, XIAO J. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler[J]. Scientific Reports, 2016, 6(1): 27949. |
27 | XIONG Y, XU D X, SCHMID J H, et al. High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering[J]. IEEE Photonics Journal, 2015, 7(5): 1-7. |
28 | WANG J, GLESK I, CHEN L R. Subwavelength grating Bragg grating filters in silicon-on-insulator[J]. Electronics Letters, 2015, 51(9): 712-714. |
29 | LIU W N, CHEN R, SHI W Y, et al. Narrow-frequency sharp-angular filters using all-dielectric cascaded meta-gratings[J]. Nanophotonics, 2020, 9(10): 3443-3450. |
30 | WANG J, ASHRAFI R, ADAMS R, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line[J]. Scientific Reports 2016, 6: 30235. |
31 | CHUNG C J, XU X C, WANG G C, et al. On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide[J]. Applied Physics Letters, 2018, 112(7): 071104. |
32 | ALMEIDA V R, PANEPUCCI R R, LIPSON M. Nanotaper for compact mode conversion[J]. Optics Letters, 2003, 28(15): 1302-1304. |
33 | CHEBEN P, SCHMID J, WANG S R, et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency[J]. Optics Express, 2015, 23(17): 22553-22563. |
34 | KUO P C, TONG Y, CHOW C W, et al. 4.36 Tbit/s silicon chip-to-chip transmission via few-mode fiber(FMF) using 2D sub-wavelength grating couplers[C]//2021 Optical Fiber Communication Conference(OFC). San Francisco: IEEE, 2021: DOI:10.1364/OFC.2021.M3D.6 . |
35 | CHENG L, MAO S, WANG Y, et al. Fiber-chip bi-wavelength multiplexing with subwavelength single-etch grating coupler and diplexer[J]. IEEE Photonics Journal, 2022, 14(1): 1-6. |
36 | PAN Z Y, XU X C, CHUNG C J, et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator[C]//Proceedings Volume 10538, Optical Interconnects XVIII. San Francisco: SPIE OPTO, 2018: 179. |
37 | RAJPUT S, KAUSHIK V, BABU P, et al. Optical modulation via coupling of distributed semiconductor heterojunctions in a Si-ITO-based subwavelength grating[J]. Physical Review Applied, 2021, 15(5): 054029. |
38 | RYTOV S M. Electromagnetic properties of a finely stratified medium[J]. Sovphysjept Engltransl, 1956, 2(3): 466-475. |
39 | CHEBEN P, HALIR R, SCHMID J H, et al. Subwavelength integrated photonics[J]. Nature, 2018, 560(7720): 565-572. |
40 | LALANNE P, ASTILEAN S, CHAVEL P, et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 1999, 16(5): 1143-1156. |
41 | LALANNE P, CHAVEL P. Metalenses at visible wavelengths: Past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3): 1600295. |
42 | HALIR R, ORTEGA-MONUX A, SCHMID J H, et al. Recent advances in silicon waveguide devices using sub-wavelength gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 279-291. |
43 | HALIR R, BOCK P J, CHEBEN P, et al. Waveguide sub-wavelength structures: A review of principles and applications[J]. Laser & Photonics Reviews, 2015, 9(1): 25-49. |
44 | KANG J, CHENG Z, ZHOU W, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides[J]. Optics Letters, 2017, 42(11): 2094-2097. |
45 | PENADES J S, ORTEGA-MONUX A, NEDELJKOVIC M, et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding[J]. Optics Express, 2016, 24(20): 22908-22916. |
46 | CHEN L R. Subwavelength grating waveguide devices in silicon-on-insulators for integrated microwave photonics(Invited Paper)[J]. Chinese Optics Letters, 2017, 15(1): 10004-10008. |
47 | GAO G, LUO M, LI X, et al. Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides[J]. Optics Express, 2017, 25(3): 2918-2927. |
48 | PEREIRA-MARTÍN D, LUQUE‐GONZÁLEZ J, WANG-ÜEMERT-PÉREZ J G, et al. Complex spectral filters in silicon waveguides based on cladding-modulated Bragg gratings[J]. Optics Express, 2021, 29(11): 15867-15881. |
49 | LUAN E, YUN H, MA M, et al. Label-free biosensing with a multi-box sub-wavelength phase-shifted Bragg grating waveguide[J]. Biomed Optics Express, 2019, 10(9): 4825-4838. |
50 | HEINSALU S, ISOGAI Y, KAWANO A, et al. Proposal and analysis of ultra-high amplitude-sensitive refractive index sensor by thick silicon multi-slot sub-wavelength Bragg grating waveguide[J]. Optics Communications, 2022, 505: 127533. |
51 | WANG J J, GLESK I, CHEN L R. Subwavelength grating devices in silicon photonics[J]. Science Bulletin, 2016, 61(11): 879-888. |
52 | WANG Z, XU X C, FAN D, et al. High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon Pillars[J]. Optics Letters, 2016, 41(14): 3375-3378. |
53 | PAN Z Y, XU X C, CHUNG C J, et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator[J]. Laser & Photonics Reviews, 2018, 12(6): 1700300.1-1700300.6. |
54 | CHEN L R, WANG J, NAGHDI B, et al. Subwavelength grating waveguide devices for telecommunications applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-11. |
55 | SUN H, WANG Y, CHEN L R. Integrated discretely tunable optical delay line based on step-chirped subwavelength grating waveguide Bragg gratings[J]. Journal of Lightwave Technology, 2020, 38(19): 5551-5560. |
56 | WANG Y, SUN H, KHALIL M, et al. On-chip optical true time delay lines based on subwavelength grating waveguides[J]. Optics Letters, 2021, 46(6): 1405-1408. |
[1] | 张文旭, 崔鑫磊, 陆满君. 一种基于MMF-FRM的低复杂度信道化接收机结构[J]. 电子学报, 2023, 51(3): 720-727. |
[2] | 朱旭, 杨健, 杨涛. 中心频率与输出端口可重构的新型滤波分支线电桥[J]. 电子学报, 2022, 50(6): 1331-1335. |
[3] | 张旭东, 雷倩倩, 张芳玲, 李弦, 李连碧. 3阶FLFB低通滤波器的最小可接受功耗分析[J]. 电子学报, 2022, 50(6): 1480-1486. |
[4] | 史芳静, 樊养余, 王鑫圆, 康博超, 陈博, 高永胜. 基于PDM-DPMZM的大动态范围微波光子I/Q下变频系统[J]. 电子学报, 2022, 50(4): 782-788. |
[5] | 吴孙勇, 李东升, 薛秋条, 孙希延, 蔡如华. 基于PHD滤波的雷达起伏目标检测前跟踪算法研究[J]. 电子学报, 2022, 50(3): 691-702. |
[6] | 刘庆, 刘宝亮, 张德伟, 李建兵, 魏进进, 刘起坤. 小型化双层基片集成波导盒型耦合拓扑滤波器设计[J]. 电子学报, 2022, 50(11): 2668-2677. |
[7] | 何雪, 胡志忠. 分数阶低通滤波器的优化设计研究[J]. 电子学报, 2022, 50(1): 185-194. |
[8] | 刘狄, 钱慧, 王中风. 基于LSTM特征提取的有限新息率畸变信号重构[J]. 电子学报, 2022, 50(1): 217-225. |
[9] | 周凯, 李德鑫, 粟毅, 何峰, 刘涛. 雷达脉冲压缩低旁瓣发射波形和非匹配滤波联合设计方法[J]. 电子学报, 2021, 49(9): 1701-1707. |
[10] | 侯利明, 连峰, 谭顺成, 徐从安. 闪烁噪声统计特性未知情况下的鲁棒广义标签多伯努利滤波器[J]. 电子学报, 2021, 49(7): 1346-1353. |
[11] | 赖春露, 姚统, 王路. 低延迟有限冲激响应平坦数字微分器的优化设计[J]. 电子学报, 2021, 49(3): 477-483. |
[12] | 伍锡安, 章泽臣, 袁圣越, 田彤. 一种快速建立的低噪声带隙基准源设计与实现[J]. 电子学报, 2021, 49(11): 2195-2201. |
[13] | 史芳静, 樊养余, 王鑫圆, 高永胜. 基于相位调制器的光子射频自干扰消除系统[J]. 电子学报, 2021, 49(10): 1900-1907. |
[14] | 马少雄, 邱实, 唐颖, 张晓. 基于工地场景的深度学习目标跟踪算法[J]. 电子学报, 2020, 48(9): 1665-1671. |
[15] | 方升, 彭习文, 谢泽明. 基于悬置线双模谐振器谐波控制型滤波功放[J]. 电子学报, 2020, 48(9): 1864-1867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||