1 |
YOU X, WANG C, HUANG J, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64: 1-74.
|
2 |
ZHANG Z, XIAO Y, MA Z, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28-41.
|
3 |
CHEN S, SUN S, KANG S. System integration of terrestrial mobile communication and satellite communication-the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156-171.
|
4 |
GEORGIOU O, RAZA U. Low power wide area network analysis: Can LoRa scale?[J]. IEEE Wireless Communications Letters, 2017, 6(2): 162-165.
|
5 |
吴进, 赵新亮, 赵隽. LoRa物联网技术的调制解调[J]. 计算机工程与设计, 2019, 40(03): 617-622.
|
|
WU Jin, ZHAO Xin-liang, ZHAO Jun. Modulation and demodulation of LoRa internet of things technology[J]. Computer Engineering and Design, 2019, 40(3): 617-622. (in Chinese)
|
6 |
TAPPAREL J, AFISIADIS O, MAYORAZ P, et al. An open-source LoRa physical layer prototype on GNU radio[C]//Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications. Atlanta, USA: IEEE, 2020: 1-5.
|
7 |
COLAVOLPE G, FOGGI T, RICCIULLI M, et al. Reception of LoRa signals from LEO satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3587-3602.
|
8 |
SAVAUX V, DELACOURT C, SAVELLI P. On time-frequency synchronization in LoRa system: From analysis to near-optimal algorithm[J]. IEEE Internet of Things Journal, 2022, 9(12): 10200-10211.
|
9 |
VANGELISTA L, CATTAPAN A. Start of packet detection and synchronization for LoraWAN modulated signals[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4608-4621.
|
10 |
XHONNEUX M, AFISIADIS O, BOL D, et al. A low-complexity LoRa synchronization algorithm robust to sampling time offsets[J]. IEEE Internet of Things Journal 2022. 9(5): 3756-3769.
|
11 |
BARUFFA G, RUGINI L, MECARELLI V, et al. Coded LoRa performance in wireless channels[C]//Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications. Istanbul, Turkey: IEEE, 2019: 1-6.
|
12 |
徐浪, 陈小莉, 田茂, 等. 基于Turbo码和ODPD判决法的LoRa改进方法[J]. 电子测量技术, 2020, 43(7): 142-147.
|
|
XU Lang, CHEN Xiao-li, TIAN Mao, et al. Improving method of LoRa based on Turbo code and ODPD[J]. Electronic Measurement Technology, 2020, 43(7): 142-147. (in Chinese)
|
13 |
沈越泓, 益晓新. 基于MMSE准则的最佳相干FSK解调器[J]. 电子学报, 2000, 28(4): 43-45.
|
|
SHEN Yue-hong, YI Xiao-xin. A novel FSK demodulator using MMSE criterion[J]. Acta Electronica Sinica, 2000, 28(4): 43-45. (in Chinese)
|
14 |
VANGELISTA L. Frequency shift chirp modulation: The LoRa modulation[J]. IEEE Signal Processing Letters, 2017, 24(12): 1818-1821.
|
15 |
FABREGAS A G I, GRANT A J. Capacity approaching codes for non-coherent orthogonal modulation[J]. IEEE Transactions on Wireless Communications, 2007, 6(11): 4004-4013.
|
16 |
LoRa Alliance. LoRaWAN Specification[EB/OL]. [2022- 01-25]. .
|
17 |
YU Z, BAI B, ZHU M. An efficient frame optimization scheme for low power wide area networks[J]. IEEE Communications Letters, 2021, 25(5): 1615-1619.
|
18 |
孙锦华, 石静静. iNET系统多径衰落信道下的两步频偏估计算法[J]. 电子学报, 2019, 47(7): 1506-1511.
|
|
SUN Jin-hua, SHI Jing-jing. A two step frequency offset estimation algorithm using the iNET preamble in multipath fading channels[J]. Acta Electronica Sinica, 2019, 47(7): 1506-1511. (in Chinese)
|
19 |
CHIANI M, ELZANATY A. On the LoRa modulation for IoT: Waveform properties and spectral analysis[J]. IEEE Internet of Things Journal, 2019, 6(5): 8463-8470.
|
20 |
VOGT J, FINGER A. Improving the max-log-MAP turbo decoder[J]. Electronics Letters, 2000, 36(23): 1937-1939.
|
21 |
3rd Generation Partnership Project. Technical Specification Group Radio Access Network: Evolved Universal Terrestrial Radio Access(E-UTRA): Multiplexing and Channel Coding: 3GPP TS 36.212 V9.2.0 [S]. 2010: 13-14.
|