电子学报 ›› 2022, Vol. 50 ›› Issue (10): 2530-2541.DOI: 10.12263/DZXB.20220124
赵文生, 方宇浩, 王大伟, 刘军
收稿日期:
2022-01-29
修回日期:
2022-05-26
出版日期:
2022-10-25
作者简介:
基金资助:
ZHAO Wen-sheng, FANG Yu-hao, WANG Da-wei, LIU Jun
Received:
2022-01-29
Revised:
2022-05-26
Online:
2022-10-25
Published:
2022-10-11
摘要:
微波谐振式传感器具有低成本、高灵敏度、实时、无损检测等特点,在生物、医疗、环境等领域都有着广阔的应用前景.一般来说,微波谐振式传感器通过传输线激励谐振单元,通过谐振频率偏移等特征变化获得待测量.本文对微波谐振式传感器现有研究成果进行了详细的综述.首先简要介绍了微波谐振式传感器分类、基本工作原理及关键性能指标,其次以位移传感器、介质传感器及液体传感器这3种类型总结当前微波谐振式传感器国内外研究进展,之后着重探讨了群智能算法、机器学习等优化算法在微波谐振式传感器优化设计方面的应用,最后展望了微波谐振式传感器的发展前景以及存在的挑战.
中图分类号:
赵文生, 方宇浩, 王大伟, 刘军. 微波谐振式传感器研究进展[J]. 电子学报, 2022, 50(10): 2530-2541.
ZHAO Wen-sheng, FANG Yu-hao, WANG Da-wei, LIU Jun. A Review on Microwave Resonant Sensors[J]. Acta Electronica Sinica, 2022, 50(10): 2530-2541.
1 | 张明, 王景璟, 马骏, 等. 从智能支架看植入式医疗电子的发展[J]. 电子学报, 2021, 49(7): 1406-1416. |
ZHANG M, WANG J J, MA J, et al. Discussion on the new generation of vascular stent from the development of implantable medical devices[J]. Acta Electronica Sinica, 2021, 49(7): 1406-1416. (in Chinese) | |
2 | 李杜娟, 陈慧旖, 刘超然, 等. 基于微纳加工技术的生物传感器研究进展[J]. 电子学报, 2021, 49(6): 1228-1236. |
LI D J, CHEN H Y, LIU C R, et al. A review on MEMS/NEMS-based biosensor[J]. Acta Electronica Sinica, 2021, 49(6): 1228-1236. (in Chinese) | |
3 | KAZEMI N, ABDOLRAZZAGHI M, MUSILEK P, et al. A temperature-compensated high-resolution microwave sensor using artificial neural network[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 919-922. |
4 | NAQUI J, MARTÍN F. Angular displacement and velocity sensors based on electric-LC(ELC) loaded microstrip lines[J]. IEEE Sensors Journal, 2014, 14(4): 939-940. |
5 | WILTSHIRE B D, ZARIFI M H. 3-D printing microfluidic channels with embedded planar microwave resonators for RFID and liquid detection[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(1): 65-67. |
6 | JAVED A, ARIF A, ZUBAIR M, et al. A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids[J]. IEEE Sensors Journal, 2020, 20(19): 11326-11334. |
7 | GAN H Y, ZHAO W S, HE L, et al. A CSRR-loaded planar sensor for simultaneously measuring permittivity and permeability[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(2): 219-221. |
8 | NGUYEN T K, TSENG C H. A new microwave humidity sensor with near-field self-injection-locked technology[J]. IEEE Sensors Journal, 2021, 21(19): 21520-21528. |
9 | MOHAMMADI S, NADARAJA A V, LUCKASAVITCH K, et al. A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(1): 2-11. |
10 | GOVIND G, AKHTAR M J. Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions[J]. IEEE Sensors Journal, 2019, 19(24): 11900-11907. |
11 | ZARIFI M H, DEIF S, ABDOLRAZZAGHI M, et al. A microwave ring resonator sensor for early detection of breaches in pipeline coatings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1626-1635. |
12 | RIZZOLI V, COSTANZO A, MASOTTI D, et al. Computer-aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 362-377. |
13 | ZHU H R, WANG J B, SUN Y F, et al. A novel automatically designed EBG structure by improved GA for ultrawideband SSN mitigation of system in package[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(1): 123-133. |
14 | MUÑOZ-ENANO J, VÉLEZ P, GIL M, et al. Planar microwave resonant sensors: A review and recent developments[J]. Applied Sciences, 2020, 10(7): 2615. |
15 | BAENA J D, BONACHE J, MARTIN F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1451-1461. |
16 | HERROJO C, PAREDES F, BONACHE J, et al. 3-D-printed high data-density electromagnetic encoders based on permittivity contrast for motion control and chipless-RFID[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1839-1850. |
17 | NAQUI J, DURÁN-SINDREU M, MARTÍN F. Novel sensors based on the symmetry properties of split ring resonators(SRRs)[J]. Sensors(Basel, Switzerland), 2011, 11(8): 7545-7553. |
18 | NAQUI J, DURÁN-SINDREU M, MARTÍN F. Alignment and position sensors based on split ring resonators[J]. Sensors(Basel), 2012, 12(9): 11790-11797. |
19 | MUÑOZ-ENANO J, VÉLEZ P, SU L J, et al. A reflective-mode phase-variation displacement sensor[J]. IEEE Access, 8: 189565-189575. |
20 | MATA-CONTRERAS J, HERROJO C, MARTÍN F. Detecting the rotation direction in contactless angular velocity sensors implemented with rotors loaded with multiple chains of resonators[J]. IEEE Sensors Journal, 2018, 18(17): 7055-7065. |
21 | TENG C, CHIO C H, TAM K W, et al. An angular displacement microwave sensor with 360° dynamic range using multi-mode resonator[J]. IEEE Sensors Journal, 2021, 21(3): 2899-2907. |
22 | ZHU P W, WANG X, ZHAO W S, et al. Design of H-shaped planar displacement microwave sensors with wide dynamic range[J]. Sensors and Actuators A: Physical, 2022, 333: 113311. |
23 | TENG C, CHIO C H, TAM K W, et al. An angular displacement microwave sensor with 360° dynamic range using multi-mode resonator[J]. IEEE Sensors Journal, 2021, 21(3): 2899-2907. |
24 | GAN H Y, ZHAO W S, WANG D W, et al. High-Q active microwave sensor based on microstrip complementary split-ring resonator(MCSRR) structure for dielectric characterization[J]. Applied Computational Electromagnetics Society, 2021, 36(7): 922-927. |
25 | MOSALLAEI H, SARABANDI K. Magneto-dielectrics in electromagnetics: Concept and applications[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(6): 1558-1567. |
26 | MUHAMMED SHAFI K T, JHA A K, AKHTAR M J. Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials[J]. IEEE Sensors Journal, 2017, 17(17): 5479-5486. |
27 | SAADAT-SAFA M, NAYYERI V, KHANJARIAN M, et al. A CSRR-based sensor for full characterization of magneto-dielectric materials[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 806-814. |
28 | ZHAO W S, GAN H Y, HE L, et al. Microwave planar sensors for fully characterizing magneto-dielectric materials[J]. IEEE Access, 2020, 8: 41985-41999. |
29 | 王树兴, 张德伟, 吴瑛, 等. 基于不同边界条件的SIW谐振腔导模场分析及应用[J]. 电子学报, 2017, 45(10): 2540-2548. |
WANG S X, ZHANG D W, WU Y, et al. Guided-mode field analysis of SIW resonator with different boundary conditions and its applications[J]. Acta Electronica Sinica, 2017, 45(10): 2540-2548. (in Chinese) | |
30 | FAN L C, ZHAO W S, GAN H Y, et al. A high-Q active substrate integrated waveguide based sensor for fully characterizing magneto-dielectric(MD) materials[J]. Sensors and Actuators A: Physical, 2020, 301: 111778. |
31 | MORALES-LOVERA H N, OLVERA-CERVANTES J L, CORONA-CHAVEZ A, et al. Dielectric anisotropy sensor using coupled resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(4): 1610-1616. |
32 | SU P Q, YANG X Q, WANG J, et al. Method of defects detection in non-metallic composites based on liquid flow controlled spoof surface plasmon polaritons[J]. IEEE Sensors Journal, 2021, 21(12): 13239-13246. |
33 | CHEN W T S, MANSOUR R R. Miniature gas sensor and sensor array with single- and dual-mode RF dielectric resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(8): 3697-3704. |
34 | EYEBE G A, BIDEAU B, LORANGER É, et al. Printed microwave frequency humidity sensor operating with phase shifting scheme[J]. IEEE Sensors Journal, 2021, 21(3): 2854-2863. |
35 | VIVALDI F, MELAI B, BONINI A, et al. A temperature-sensitive RFID tag for the identification of cold chain failures[J]. Sensors and Actuators A: Physical, 2020, 313: 112182. |
36 | LEE C S, BAI B, SONG Q R, et al. Microwave resonator for eye tracking[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 5417-5428. |
37 | KIANI S, REZAEI P, FAKHR M. Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8. |
38 | MAO Y J, ZHANG Y J, CHEN Z R, et al. A noncontact microwave sensor based on cylindrical resonator for detecting concentration of liquid solutions[J]. IEEE Sensors Journal, 2021, 21(2): 1208-1214. |
39 | MAYANI M G, HERRAIZ-MARTÍNEZ F J, DOMINGO J M, et al. A novel dielectric resonator-based passive sensor for drop-volume binary mixtures classification[J]. IEEE Sensors Journal, 2021, 21(18): 20156-20164. |
40 | FAN L C, ZHAO W S, WANG D W, et al. An ultrahigh sensitivity microwave sensor for microfluidic applications[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(12): 1201-1204. |
41 | WU W J, ZHAO W S, WANG D W, et al. Ultrahigh-sensitivity microwave microfluidic sensors based on modified complementary electric-LC and split-ring resonator structures[J]. IEEE Sensors Journal, 2021, 21(17): 18756-18763. |
42 | CHEN Y K, HUANG J, XIANG Y H, et al. A modified SIW re-entrant microfluidic microwave sensor for characterizing complex permittivity of liquids[J]. IEEE Sensors Journal, 2021, 21(13): 14838-14846. |
43 | ROCCO G M, BOZZI M, SCHREURS D, et al. 3-D printed microfluidic sensor in SIW technology for liquids' characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 1175-1184. |
44 | GAN H Y, ZHAO W S, LIU Q, et al. Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator(MCSRR) structure[J]. IEEE Sensors Journal, 2020, 20(11): 5876-5884. |
45 | LIU Q, YU Y F, ZHAO W S, et al. Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid[J]. Chinese Physics B, 2020, 29(1): 215-219. |
46 | KAZEMI N, ABDOLRAZZAGHI M, MUSILEK P. Comparative analysis of machine learning techniques for temperature compensation in microwave sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(9): 4223-4236. |
47 | WU W J, ZHAO W S, WANG D W, et al. A temperature-compensated differential microstrip sensor for microfluidic applications[J]. IEEE Sensors Journal, 2021, 21(21): 24075-24083. |
48 | JUN S Y, SANZ IZQUIERDO B, PARKER E A. Liquid sensor/detector using an EBG structure[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3366-3373. |
49 | CAI J, ZHOU Y J, ZHANG Y, et al. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids[J]. Optics Express, 2018, 26(19): 25460-25470. |
50 | LUO Y, DONG N, PEI Y, et al. A sensitive glucose sensor based on active metamaterial with programmable states[J]. IEEE Sensors Journal, 2021, 21(21): 24038-24047. |
51 | 段宝岩, 王猛. 微波天线多场耦合理论模型与多学科优化设计的研究[J]. 电子学报, 2013, 41(10): 2051-2060. |
DUAN B Y, WANG M. Research of the theoretical model of multi-field coupling and multidisciplinary optimization design on microwave antennas[J]. Acta Electronica Sinica, 2013, 41(10): 2051-2060. (in Chinese) | |
52 | 彭喜元, 彭宇, 戴毓丰. 群智能理论及应用[J]. 电子学报, 2003, 31(S1): 1982-1988. |
PENG X Y, PENG Y, DAI Y F. Swarm intelligence theory and applications[J]. Acta Electronica Sinica, 2003, 31(S1): 1982-1988. (in Chinese) | |
53 | SAADAT-SAFA M, NAYYERI V, GHADIMI A, et al. A pixelated microwave near-field sensor for precise characterization of dielectric materials[J]. Scientific Reports, 2019, 9: 13310. |
54 | WANG B X, ZHAO W S, WANG D W, et al. Sensitivity optimization of differential microwave sensors for microfluidic applications[J]. Sensors and Actuators A: Physical, 2021, 330: 112866. |
55 | ZHAO W S, WANG B X, WANG D W, et al. Swarm intelligence algorithm-based optimal design of microwave microfluidic sensors[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 2077-2087. |
56 | FANG Y H, ZHAO W S, LIN F K, et al. An AMC-based liquid sensor optimized by particle-ant colony optimization algorithms[J]. IEEE Sensors Journal, 2022, 22(3): 2083-2090. |
57 | 韩冲, 王俊丽, 吴雨茜, 等. 基于神经进化的深度学习模型研究综述[J]. 电子学报, 2021, 49(2): 372-379. |
HAN C, WANG J L, WU Y X, et al. A review of deep learning models based on neuroevolution[J]. Acta Electronica Sinica, 2021, 49(2): 372-379. (in Chinese) | |
58 | WANG B X, ZHAO W S, WANG D W, et al. Optimal design of planar microwave microfluidic sensors based on deep reinforcement learning[J]. IEEE Sensors Journal, 2021, 21(24): 27441-27449. |
59 | 李明, 周颖. 微波湿度仪在历史建筑避潮层修复效果检测中的应用[J]. 建筑结构, 2021, 51(S2): 1429-1433. |
LI M, ZHOU Y. Application of microwave humidity meter in detection of the moisture-proof layer in historic buildings[J]. Building Structure, 2021, 51(S2): 1429-1433. (in Chinese) | |
60 | CEBEDIO M C, RABIOGLIO L A, GELOSI I E, et al. Analysis and design of a microwave coplanar sensor for non-invasive blood glucose measurements[J]. IEEE Sensors Journal, 2020, 20(18): 10572-10581. |
61 | OMER A E, SHAKER G, SAFAVI-NAEINI S, et al. Non-invasive real-time monitoring of glucose level using novel microwave biosensor based on triple-pole CSRR[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(6): 1407-1420. |
62 | ASHYAP A Y I, DAHLAN S H B, ABIDIN Z Z, et al. Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications[J]. IEEE Access, 8: 56346-56358. |
63 | MOHD SHAH S R, ASAN N B, VELANDER J, et al. Analysis of thickness variation in biological tissues using microwave sensors for health monitoring applications[J]. IEEE Access, 2019, 7: 156033-156043. |
64 | GARRETT D C, FEAR E C. Feasibility study of hydration monitoring using microwaves—part 1: A model of microwave property changes with dehydration[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2019, 3(4): 292-299. |
65 | YUAN X M, TIAN H S, WANG H Y, et al. Edge-enabled WBANs for efficient QoS provisioning healthcare monitoring: A two-stage potential game-based computation offloading strategy[J]. IEEE Access, 2020, 8: 92718-92730. |
66 | ATRASH M EL, ABDALGALIL O F, MAHMOUD I S, et al. Wearable high gain low SAR antenna loaded with backed all‐textile EBG for WBAN applications[J]. IET Microwaves, Antennas & Propagation, 2020, 14(8): 791-799. |
67 | DEIF S, DANESHMAND M. Multiresonant chipless RFID array system for coating defect detection and corrosion prediction[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8868-8877. |
68 | VIVALDI F, MELAI B, BONINI A, et al. A temperature-sensitive RFID tag for the identification of cold chain failures[J]. Sensors and Actuators A: Physical, 2020, 313: 112182. |
69 | JHA A K, LAMECKI A, MROZOWSKI M, et al. A microwave sensor with operating band selection to detect rotation and proximity in the rapid prototyping industry[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 683-693. |
70 | 王康, 徐雷钧, 项厚友, 等. 基于微波技术的谷物特性分析与检测装置设计[J]. 自动化仪表, 2021, 42(10): 17-21, 26. |
WANG K, XU L J, XIANG H Y, et al. Design of grain characteristic analysis and detection device based on microwave technology[J]. Process Automation Instrumentation, 2021, 42(10): 17-21, 26. (in Chinese) | |
71 | 宋海, 严磊, 胡鑫. 微波煤粉流量检测系统在长春一热的应用[J]. 机电信息, 2021(25): 7-8. |
[1] | 李杜娟, 陈慧旖, 刘超然, 樊凯, 王高峰. 基于微纳加工技术的生物传感器研究进展[J]. 电子学报, 2021, 49(6): 1228-1236. |
[2] | 杨洋. 改进帕累托算法求解超大规模多选择背包问题[J]. 电子学报, 2020, 48(6): 1205-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||