• •
张龙1, 刘斯扬1, 孙伟锋1, 马杰1, 盘成务1, 何乃龙2, 张森2, 苏巍2
收稿日期:
2022-05-05
修回日期:
2022-11-07
出版日期:
2022-11-26
通讯作者:
作者简介:
基金资助:
ZHANG Long1, LIU Si-yang1, SUN Wei-feng1, MA Jie1, PAN Cheng-wu1, HE Nai-long2, ZHANG Sen2, SU Wei2
Received:
2022-05-05
Revised:
2022-11-07
Online:
2022-11-26
Corresponding author:
摘要:
利用单芯片集成技术制造的智能功率芯片具有体积小、寄生小、损耗低等方面的优势,其技术难度远高于传统的多芯片、单封装形式的智能功率模块.本文首先介绍了单片智能功率芯片的架构与技术需求.然后,探讨了绝缘体上硅功率半导体单芯片集成的工艺流程和器件类型.接着,总结了高压横向IGBT器件技术、续流二极管器件技术、LDMOS器件技术的特征和效果.此外,还讨论了单片智能功率芯片的相关可靠性问题,包括高压互连线效应和低温雪崩不稳定.本课题组在功率半导体集成型器件的电流能力、关断速度、短路承受能力、反向恢复峰值电流、安全工作区、高压互连线屏蔽、低温可靠性等关键特性优化或可靠性提升方面进行了自主创新,构建了基于绝缘体上硅的功率半导体单芯片集成技术,并成功研制了单片智能功率芯片.
中图分类号:
张龙, 刘斯扬, 孙伟锋, 马杰, 盘成务, 何乃龙, 张森, 苏巍. 绝缘体上硅功率半导体单芯片集成技术[J]. 电子学报, DOI: 10.12263/DZXB.20220492.
ZHANG Long, LIU Si-yang, SUN Wei-feng, MA Jie, PAN Cheng-wu, HE Nai-long, ZHANG Sen, SU Wei. Study on the Silicon-on-Insulator Power Semiconductor Monolithic Integration Technology[J]. Acta Electronica Sinica, DOI: 10.12263/DZXB.20220492.
参数 | 本课题组技术 | 厚介质技术[ | 淡P阱技术[ | 多浮空场板技术[ |
---|---|---|---|---|
带高压互连线结构的击穿电压(V) | 550 | 539 | 716 | 732 |
不带高压互连线结构的击穿电压(V) | 550 | 876 | 876 | 876 |
ƞs | 100% | 62% | 82% | 84% |
表1 本课题组提出的双沟槽高压互连线屏蔽技术与其他技术的对比
参数 | 本课题组技术 | 厚介质技术[ | 淡P阱技术[ | 多浮空场板技术[ |
---|---|---|---|---|
带高压互连线结构的击穿电压(V) | 550 | 539 | 716 | 732 |
不带高压互连线结构的击穿电压(V) | 550 | 876 | 876 | 876 |
ƞs | 100% | 62% | 82% | 84% |
1 | 代茜. 低压大电流MOSFET智能功率模块关键技术研究[D]. 北京: 中国科学院大学, 2017. |
DAI Q. Research on Key Technologies of Low-Voltage MOSFET Intelligent Power Module[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese) | |
2 | 龚熙国, 徐延东. 智能功率模块在电动汽车中的应用[J]. 电力电子技术, 2010, 44(11): 122-124. |
GONG X G, XU Y D. Intelligent power module for electric vehicle applications[J]. Power Electronics, 2010, 44(11): 122-124. (in Chinese) | |
3 | SAKURAI N, MORI M, YATSUO T. High speed, high current capacity LIGBT and diode for output stage of high voltage monolithic three-phase inverter IC[C]//Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. Tokyo: IEEE, 1990: 66-71. |
4 | NAKAGAWA A, YAMAGUCHI Y, OGURA T, et al. 500V three phase inverter ICs based on a new dielectric isolation technique[C]//Proceedings of the 4th International Symposium on Power Semiconductor Devices and Ics. Tokyo: IEEE, 1992: 328-332. |
5 | ENDO K, BABA Y, UDO Y, et al. A 500 V 1A 1-chip inverter IC with a new electric field reduction structure[C]//Proceedings of the 6th International Symposium on Power Semiconductor Devices and Ics. Davos: IEEE, 1994: 379-383. |
6 | FUNAKI H, MATSUDAI T, NAKAGAWA A, et al. Multi-channel SOI lateral IGBTs with large SOA[C]//Proceedings of 9th International Symposium on Power Semiconductor Devices and ICs. Weimar: IEEE, 1997: 33-36. |
7 | NAKAGAWA A, FUNAKI H, YAMAGUCHI Y, et al. Improvement in lateral IGBT design for 500 V 3 A one chip inverter ICs[C]//11th International Symposium on Power Semiconductor Devices and ICs. Toronto: IEEE, 1999: 321-324. |
8 | SHIGEKI, AKIO, YOUICHI, et al. Carrier-storage effect and extraction-enhanced lateral IGBT (E2LIGBT): A super-high speed and low on-state voltage LIGBT superior to LDMOSFET[C]//2012 24th International Symposium on Power Semiconductor Devices and ICs. Bruges: IEEE, 2012: 393-396. |
9 | HARA K, WADA S, SAKANO J, et al. 600V single chip inverter IC with new SOI technology[C]//2014 IEEE 26th International Symposium on Power Semiconductor Devices & ICs. Waikoloa: IEEE, 2014: 418-421. |
10 | YU S Y, ZHU J, LU Y Y, et al. Gate control circuit for the LIGBT to improve the freewheeling characteristics in monolithic IC[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 279-282. |
11 | ZHU J, YU S Y, ZHU G C, et al. Device and circuit design for improving the freewheeling characteristics of high voltage monolithic integrated circuit[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11420-11427. |
12 | MA J, ZHANG L, ZHU J, et al. Silicon-on-insulator lateral DMOS with potential modulation plates and multiple deep-oxide trenches[J]. IEEE Transactions on Electron Devices, 2021, 68(10): 5073-5077. |
13 | ZHANG L, ZHU J, CAO S L, et al. Mechanism and novel structure for di/dt controllability in U-shaped channel silicon-on-insulator lateral IGBTs[J]. IEEE Electron Device Letters, 2019, 40(10): 1658-1661. |
14 | ZHANG C W, GUO H J, CHEN Z X, et al. Super field plate technique that can provide charge balance effect for lateral power devices without occupying drift region[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2218-2222. |
15 | ZHANG L, ZHU J, MA J, et al. Turn-off transient of superjunction SOI lateral IGBTs: Mechanism and optimization strategy[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1409-1415. |
16 | MA J, ZHANG L, ZHU J, et al. Simulation study of novel trench gate U-shaped channel SOI lateral IGBTs with suppressed gate voltage overshoot and reduced di/dt[J]. IEEE Transactions on Electron Devices, 2021, 68(8): 3930-3935. |
17 | ZHANG L, ZHU J, MA J, et al. 500-V silicon-on-insulator lateral IGBT with W-shaped n-typed buffer and composite p-typed collectors[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1430-1434. |
18 | HUANG X Q, ZHAO M N, WANG H, et al. Analysis of clamped inductive turn-off failure of multi-finger lateral IGBT in SOI single chip inverter ICs[C]//2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits. Chengdu: IEEE, 2017: 1-4. |
19 | LI S H, ZHANG L, ZHU J, et al. A high-speed SOI-LIGBT with electric potential modulation trench and low-doped buried layer[C]//2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs. Chicago: IEEE, 2018: 323-326. |
20 | 张龙. 厚膜SOI基高压横向IGBT器件研究[D]. 南京: 东南大学, 2018. |
ZHANG L. Research on the High-Voltgae Lateral IGBT on Thick SOI[D]. Nanjing: Southeast University, 2018. (in Chinese) | |
21 | ZHANG L, ZHU J, ZHAO M N, et al. Turn-off failure in multi-finger SOI-LIGBT used for single chip inverter ICs[J]. Solid-State Electronics, 2017, 137: 29-37. |
22 | ZHU J, ZHANG L, SUN W F, et al. Further study of the U-shaped channel SOI-LIGBT with enhanced current density for high-voltage monolithic ICs[J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1161-1167. |
23 | 杨春. SOI高压集成电路的隔离技术研究[D]. 成都: 电子科技大学, 2006. |
YANG C. Research on Isolation Technology of High Voltage SOI Integrated Circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2006. (in Chinese) | |
24 | ZHANG L, ZHU J, SUN W F, et al. A new high-voltage interconnection shielding method for SOI monolithic ICs[J]. Solid-State Electronics, 2017, 133: 25-30. |
25 | ZHANG Y W, ZHU J, SUN W F, et al. A capacitive-loaded level shift circuit for improving the noise immunity of high voltage gate drive IC[C]//2015 IEEE 27th International Symposium on Power Semiconductor Devices & ICs. Hongkong: IEEE, 2015: 173-176. |
26 | ZHU J, SUN W F, ZHANG Y W, et al. An integrated bootstrap diode emulator for 600-V high voltage gate drive IC with P-sub/P-epi technology[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 518-523. |
27 | YU S Y, ZHU J, SUN W F, et al. A dVS/dt noise immunity improvement structure based on slope sensing technology for 200V high voltage gate drive circuit[C]//2020 32nd International Symposium on Power Semiconductor Devices and ICs. Vienna: IEEE, 2020: 270-273. |
28 | ZHU J, ZHANG Y W, SUN W F, et al. Noise immunity and its temperature characteristics study of the capacitive-loaded level shift circuit for high voltage gate drive IC[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3027-3034. |
29 | QIAO M, ZHANG X, WEN S, et al. A review of HVI technology[J]. Microelectronics Reliability, 2014, 54(12): 2704-2716. |
30 | ZHANG L, ZHU J, SUN W F, et al. A novel high-voltage interconnection structure with dual trenches for 500V SOI-LIGBT[C]//2016 28th International Symposium on Power Semiconductor Devices and ICs. Prague: IEEE, 2016: 439-442. |
31 | QIAN Q S, SUN W F, HAN D X, et al. The optimization of deep trench isolation structure for high voltage devices on SOI substrate[J]. Solid-State Electronics, 2011, 63(1): 154-157. |
32 | MA J, ZHANG L, ZHU J, et al. Influence of emitter-side deep-oxide trenches on dynamic avalanche capability of SOI lateral IGBTs used for monolithic power ICs[C]//2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology. Qingdao: IEEE, 2018: 1-3. |
33 | SUN W F, ZHU J, ZHANG L, et al. A novel silicon-on-insulator lateral insulated-gate bipolar transistor with dual trenches for three-phase single chip inverter ICs[J]. IEEE Electron Device Letters, 2015, 36(7): 693-695. |
34 | 席伟. 智能功率芯片的短路保护分析与设计[D]. 南京: 东南大学, 2016. |
Ⅺ W. The Analysis and Design of Short Current Protection in Smart Power ICS[D]. Nanjing: Southeast University, 2016. (in Chinese) | |
35 | Mitsubishi Electric. Super Mini DIPIPM Ver.7 Serises APPLICATION NOTE PSSxxS93x6-AG[EB/OL]. [2022-04-08]. . |
36 | 张允武. 600V单片集成智能功率驱动芯片关键技术研究[D]. 南京: 东南大学, 2016. |
ZHANG Y W. Research on the Key Technology of 600V Single Chip Intelligent Power Integrated Circuit[D]. Nanjing: Southeast University, 2016. (in Chinese) | |
37 | 周峰. 厚膜SOI-LDMOS安全工作区的研究与设计[D]. 南京: 东南大学, 2017. |
ZHOU F. Research and Design of the Safe Operating Aera of SOI-LDMOS Based on Thick Film Process[D]. Nanjing: Southeast University, 2017. (in Chinese) | |
38 | 黄克琴. 智能功率驱动芯片用SOI-FRD反向恢复特性的研究与优化[D]. 南京: 东南大学, 2016. |
HUANG K Q. Design and Optimization of the Reverse Re-Covery Characteristic of SOI-FRD for Intelligent Power Driver Chip[D]. Nanjing: Southeast University, 2016. (in Chinese) | |
39 | ZHANG L, ZHU J, SUN W F, et al. Novel snapback-free reverse-conducting SOI-LIGBT with dual embedded diodes[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 1187-1192. |
40 | 都灵. SOI横向功率器件的高压互连效应的研究[D]. 南京: 南京邮电大学, 2018. |
DU L. High Voltage Interconnect Effect of SOI lateral Power Devices[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese) | |
41 | ZHU J, SUN W F, DAI W N, et al. TC-LIGBTs on the thin SoI layer for the high voltage monolithic ICs with high current density and latch-up immunity[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3814-3820. |
42 | LU D H, MIZUSHIMA T, KITAMURA A, et al. Retrograded channel SOI LIGBTs with enhanced safe operating area[C]//2008 20th International Symposium on Power Semiconductor Devices and ICs. Orlando: IEEE, 2008: 32-35. |
43 | ZHU J, SUN W F, QIAN Q S, et al. 700V thin SOI-LIGBT with high current capability[C]//2013 25th International Symposium on Power Semiconductor Devices & ICs. Kanazawa: IEEE, 2013: 119-122. |
44 | TSUJIUCHI M, NITTA T, IPPOSHI T, et al. Evolution of 200V lateral-IGBT technology[C]//2014 IEEE 26th International Symposium on Power Semiconductor Devices & ICs. Waikoloa: IEEE, 2014: 426-429. |
45 | SAKANO J, SHIRAKAWA S, HARA K, et al. Large Current capability 270V lateral IGBT with multi-emitter[C]//2010 22nd International Symposium on Power Semiconductor Devices & ICs. Hiroshima: IEEE, 2010: 83-86. |
46 | ZHU J, SUN W F, ZHANG L, et al. High voltage thick SOI-LIGBT with high current density and latch-up immunity[C]//2015 IEEE 27th International Symposium on Power Semiconductor Devices & ICs. Hongkong: IEEE, 2015: 169-172. |
47 | ZHANG L, ZHU J, SUN W F, et al. Comparison of short-circuit characteristics of trench gate and planar gate U-shaped channel SOI-LIGBTs[J]. Solid-State Electronics, 2017, 135: 24-30. |
48 | ZHANG L, ZHU J, SUN W F, et al. A U-shaped channel SOI-LIGBT with dual trenches[J]. IEEE Transactions on Electron Devices, 2017, 64(6): 2587-2591. |
49 | ZHANG L, ZHU J, SUN W F, et al. U-shaped channel SOI-LIGBT with dual trenches to improve the trade-off between saturation voltage and turn-off loss[C]//2017 29th International Symposium on Power Semiconductor Devices and ICs. Sapporo: IEEE, 2017: 291-294. |
50 | FANG J, JIA Y Y, PIAN H, et al. A high speed SOI LIGBT with electronic barrier modulation structure[C]//2013 25th International Symposium on Power Semiconductor Devices & ICs. Kanazawa: IEEE, 2013: 139-142. |
51 | LU D H, JIMBO S, FUJISHIMA N. A low on-resistance high voltage soi ligbt with oxide trench in drift region and hole bypass gate configuration[C]//2005. IEDM Technical Digest IEEE International Electron Devices Meeting. Washington: IEEE, 2005: 381-384. |
52 | ZHANG L, ZHU J, CAO S L, et al. Optimization of VCE plateau for deep-oxide trench SOI lateral IGBT during inductive load turn-OFF[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3862-3868. |
53 | TEE E K C, ANTONIOU M, UDREA F, et al. 200 V superjunction N-type lateral insulated-gate bipolar transistor with improved latch-up characteristics[J]. IEEE Transactions on Electron Devices, 2013, 60(4): 1412-1415. |
54 | KHO E C T, HOELKE A D, PILKINGTON S J, et al. 200-V lateral superjunction LIGBT on partial SOI[J]. IEEE Electron Device Letters, 2012, 33(9): 1291-1293. |
55 | UDREA F, TRAJKOVIC T, LEE C, et al. Ultra-fast LIGBTs and superjunction devices in membrane technology[C]//The 17th International Symposium on Power Semiconductor Devices and ICs. Santa Barbara: IEEE, 2005: 267-270. |
56 | ANTONIOU M, TEE E K C, PILKINGTON S J, et al. The lateral superjunction PSOI LIGBT and LDMOSFET[C]//CAS 2012 International Semiconductor Conference. Sinaia: IEEE, 2012: 351-354. |
57 | CAO S L, ZHANG L, MA J, et al. Impact of depeltion in substrate on turn-off characteristic of superjunction SOI-LIGBT[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits. Xi'an: IEEE, 2019: 1-3. |
58 | ZHANG L, ZHU J, SUN W F, et al. Low-loss SOI-LIGBT with dual deep-oxide trenches[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3282-3286. |
59 | ZHANG L, ZHU J, ZHAO M N, et al. Low-loss SOI-LIGBT with triple deep-oxide trenches[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3756-3761. |
60 | GOUGH P A, SIMPSON M R, RUMENNIK V. Fast switching lateral insulated gate transistor[C]//1986 International Electron Devices Meeting. Los Angeles: IEEE, 1986: 218-221. |
61 | CHUL J H, BYEON D S, OH J K, et al. A fast-switching SOI SA-LIGBT without NDR region[C]//12th International Symposium on Power Semiconductor Devices & ICs. Toulouse: IEEE, 2000: 149-152. |
62 | SIMPSON M R. Analysis of negative differential resistance in the I-V characteristics of shorted-anode LIGBTs[J]. IEEE Transactions on Electron Devices, 1991, 38(7): 1633-1640. |
63 | SIN J K O, MUKHERJEE S. Lateral insulated-gate bipolar transistor(LIGBT) with a segmented anode structure[J]. IEEE Electron Device Letters, 1991, 12(2): 45-47. |
64 | ZHU J, ZHANG L, SUN W F, et al. Electrical characteristic study of an SOI-LIGBT with segmented trenches in the anode region[J]. IEEE Transactions on Electron Devices, 2016, 63(5): 2003-2008. |
65 | HARDIKAR S, TADIKONDA R, SWEET M, et al. A fast switching segmented anode NPN controlled LIGBT[J]. IEEE Electron Device Letters, 2003, 24(11): 701-703. |
66 | QIN Z X, SANKARA NARAYANAN E M. Npn controlled lateral insulated gate bipolar transistor[J]. Electronics Letters, 1995, 31(23): 2045-2047. |
67 | LUO X R, ZHAO Z, HUANG L, et al. A snapback-free fast-switching SOI LIGBT with an embedded self-biased n-MOS[J]. IEEE Transactions on Electron Devices, 2018, 65(8): 3572-3576. |
68 | PATHIRANA V, UDUGAMPOLA N, TRAJKOVIC T, et al. Low-loss 800-V lateral IGBT in bulk Si technology using a floating electrode[J]. IEEE Electron Device Letters, 2018, 39(6): 866-868. |
69 | ZHANG L, ZHU J, MA J, et al. 500-V silicon-on-insulator lateral IGBT with W-shaped n-typed buffer and composite p-typed collectors[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1430-1434. |
70 | ZHANG L, ZHU J, SUN W F, et al. A high current density SOI-LIGBT with Segmented Trenches in the Anode region for suppressing negative differential resistance regime[C]//2015 IEEE 27th International Symposium on Power Semiconductor Devices & ICs. Hongkong: IEEE, 2015: 49-52. |
71 | FLACK E, GERLACH W, KOREC J. Influence of interconnections onto the breakdown voltage of planar high-voltage p-n junctions[J]. IEEE Transactions on Electron Devices, 1993, 40(2): 439-447. |
72 | DENG S L, HOSSAIN Z, BURKE P. Doping engineering for improved immunity against BV softness and BV shift in trench power MOSFET[C]//2016 28th International Symposium on Power Semiconductor Devices and ICs. Prague: IEEE, 2016: 375-378. |
73 | HOSSAIN Z, BURRA B, SELLERS J, et al. Process & design impact on BVDSS stability of a shielded gate trench power MOSFET[C]//2014 IEEE 26th International Symposium on Power Semiconductor Devices & ICs. Waikoloa: IEEE, 2014: 378-381. |
74 | MA J, ZHANG L, ZHU J, et al. Channel-off avalanche instability in SOI lateral IGBT at low temperature: Mechanism and optimization schemes[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs. Shanghai: IEEE, 2019: 387-390. |
75 | ZHANG L, ZHU J, CAO S L, et al. Analysis of OFF-state dynamic avalanche instability in silicon-on-insulator lateral IGBTs at low temperature[J]. Microelectronics Reliability, 2020, 107: 113600. |
[1] | 彭超, 雷志锋, 张战刚, 何玉娟, 黄云, 恩云飞. 基于TCAD的绝缘体上硅器件总剂量效应仿真技术研究[J]. 电子学报, 2019, 47(8): 1755-1761. |
[2] | 席善学, 陆妩, 郑齐文, 崔江维, 魏莹, 姚帅, 赵京昊, 郭旗. 体效应对超深亚微米SOI器件总剂量效应的影响[J]. 电子学报, 2019, 47(5): 1065-1069. |
[3] | 李浩, 任建伟, 杜寰. 高鲁棒性N型沟道RF-LDMOS在TLP应力下的电学机理研究[J]. 电子学报, 2019, 47(11): 2317-2322. |
[4] | 姚佳飞, 郭宇锋, 李曼, 王子轩, 胡善文, 夏天. 高k介质阶梯变宽度SOI LDMOS[J]. 电子学报, 2018, 46(7): 1781-1786. |
[5] | 魏子辉, 黄水龙, 单强. 采用环型运放的12-bit 40-MS/s采样保持电路设计实现[J]. 电子学报, 2017, 45(12): 2890-2895. |
[6] | 恽小华, 孙琳琳, 楚然, 申明磊. 一种基于双级支线功分/功合网络的毫米波固态功率放大器[J]. 电子学报, 2006, 34(S1): 2347-2349. |
[7] | 彭龙新;林金庭;魏同立. 宽带单片低噪声放大器[J]. 电子学报, 2004, 32(11): 1933-1937. |
[8] | 方 健;李肇基;李鸿雁;杨 健. 低能He注入局域寿命控制电导调制型功率器件输运模型[J]. 电子学报, 2001, 29(8): 1072-1075. |
[9] | 杨洪强;陈星弼. 半桥式功率输出级中高速低功耗低侧管的实现[J]. 电子学报, 2001, 29(6): 814-815. |
[10] | 杨健;朱小安;方健;李肇基. 空穴注入控制型LIGBT的研究[J]. 电子学报, 2000, 28(5): 119-121. |
[11] | 陈雪军;高建峰;陈效建;林金庭. 2~26GHzGaAs单片功率放大器[J]. 电子学报, 2000, 28(11): 140-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||