1 |
SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-168.
|
2 |
曹建农. 图像分割的熵方法综述[J]. 模式识别与人工智能, 2012, 25(6): 958-971.
|
|
CAO Jian-nong. Review on image segmentation based on entropy[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(6): 958-971. (in Chinese)
|
3 |
吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994-2014)[J]. 数据采集与处理, 2015, 30(1): 1-23.
|
|
WU Yi-quan, MENG Tian-liang, WU Shi-hua. Research progress of image thresholding methods in recent 20 years(1994-2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1): 1-23. (in Chinese)
|
4 |
LEI Tao, JIA Xiaohong, LIU Tongliang, et al. Adaptive morphological reconstruction for seeded image segmentation[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5510-5523.
|
5 |
CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
|
6 |
LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027-3041.
|
7 |
BOYKOV Y, FUNKA-LEA G. Graph cuts and efficient ND image segmentation[J]. International Journal of Computer Vision, 2006, 70(2): 109-131.
|
8 |
黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531.
|
|
HUANG Peng, ZHENG Qi, LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University (Nature and Science Edition), 2020, 66(6): 519-531. (in Chinese)
|
9 |
许洪斌, 冯柯茹, 黄琳, 等. 滚动接触疲劳缺陷检测的改进Otsu算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1130-1138.
|
|
XU Hong-bin, FENG Ke-ru, HUANG Lin, et al. Improved Otsu algorithm for rolling contact fatigue defect detection[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1130-1138. (in Chinese)
|
10 |
王俊, 王士同, 邓赵红, 等. 面向小目标图像的快速核密度估计图像阈值分割算法[J]. 自动化学报, 2012, 38(10): 1679-1689.
|
|
WANG Jun, WANG Shi-tong, DENG Zhao-hong, et al. Fast kernel density estimator based image thresholding algorithm for small target images[J]. Acta Automatica Sinica, 2012, 38(10): 1679-1689. (in Chinese)
|
11 |
NIE Fangyan, ZHANG Pingfeng, LI Jianqi, et al. A novel generalized entropy and its application in image thresholding[J]. Signal Processing, 2017, 134(5): 23-34.
|
12 |
WANG Zhenzhou, XIONG Jingjing, YANG Yongming, et al. A flexible and robust threshold selection method[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2220-2232.
|
13 |
TIZHOOSH H R. Image thresholding using type II fuzzy sets[J]. Pattern Recognition, 2005, 38(12): 2363-2372.
|
14 |
COUDRAY N, BUESSLER J L, URBAN J P. Robust threshold estimation for images with unimodal histograms[J]. Pattern Recognition Letters, 2010, 31(9): 1010-1019.
|
15 |
许向阳, 宋恩民, 金良海. Otsu准则的阈值性质分析[J]. 电子学报, 2009, 37(12): 2716-2719.
|
|
XU Xiang-yang, SONG En-min, JIN Liang-hai. Characteristic analysis of threshold based on Otsu criterion[J]. Acta Electronica Sinica, 2009, 37(12): 2716-2719. (in Chinese)
|
16 |
CAO Xinhua, LI Taihao, LI Hongli, et al. A robust parameter-free thresholding method for image segmentation[J]. IEEE Access, 2018, 7: 3448-3458.
|
17 |
KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of histogram[J]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
|
18 |
李致衡, 陈亮, 张博程, 等. 基于最大熵阈值分割的SAR图像溢油检测[J]. 信号处理, 2019, 35(6): 1111-1117.
|
|
LI Zhi-heng, CHEN Liang, ZHANG Bo-chen, et al. SAR image oil spill detection based on maximum entropy threshold segmentation[J]. Journal of Signal Processing, 2019, 35(6): 1111-1117. (in Chinese)
|
19 |
SAHOO P K, WILKINS C, YEAGER J. Threshold selection using Renyi's entropy[J]. Pattern Recognition, 1997, 30(1): 71-84.
|
20 |
雷博, 范九伦. 一维Renyi熵阈值法中参数的自适应选取[J]. 光子学报, 2009, 38(9): 2439-2443.
|
|
LEI Bo, Fan Jiu-lun. Self-adaptation preferences in one-dimensional Renyi entropy thresholding[J]. Acta Photonica Sinica, 2009, 38(9): 2439-2443. (in Chinese)
|
21 |
DE ALBUQUERQUE M P, ESQUEF I A, MELLO A R G. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059-1065.
|
22 |
LIN Qianqian, Congjie OU. Tsallis entropy and the long-range correlation in image thresholding[J]. Signal Processing, 2012, 92(12): 2931-2939.
|
23 |
RAMIREZ-REYES A, HERNANDEZ-MONTO YA A R, HERRERA-CORRAL G, et al. Determining the entropic index q of Tsallis entropy in images through redundancy[J]. Entropy, 2016, 18(8): 1-14.
|
24 |
汪方斌, 孙凡, 王峰, 等. 基于Tsallis熵的红外偏振热像分割算法[J]. 红外技术, 2020, 42(3): 245-256.
|
|
WANG Fang-bin, SUN Fan, WANG Feng, et al. Infrared polarization thermal image segmentation algorithm based on Tsallis entropy[J]. Infrared Technology, 2020, 42(3): 245-256. (in Chinese)
|
25 |
聂方彦, 李建奇, 张平凤, 等. 复杂图像的Kaniadakis熵阈值分割方法[J]. 激光与红外, 2017, 47(8): 1040-1045.
|
|
NIE Fang-yan, LI Jian-qi, ZHANG Ping-feng, et al. Threshold segmentation method of complex image based on Kaniadakis entropy[J]. Laser and Infrared, 2017, 47(8): 1040-1045. (in Chinese)
|
26 |
LEI Bo, FAN Jiulun. Adaptive Kaniadakis entropy thresholding segmentation algorithm based on particle swarm optimization[J]. Soft Computing, 2020, 24(10): 7305-7318.
|
27 |
范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214-221.
|
|
FAN Jiu-lun, LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics and Information Technology, 2020, 42(1): 214-221. (in Chinese)
|
28 |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
|
29 |
LINDEBERG T. Scale-space for discrete signals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(3): 234-254.
|
30 |
TSALLIS C. Possible generalization of Boltzmann-Gibbs statistics[J]. Journal of Statistical Physics, 1988, 52(1): 479-487.
|
31 |
AJA-FERNANDEZ S, CURIALE A H, SANCHEZ-FERRERO G V. A local fuzzy thresholding methodology for multiregion image segmentation[J]. Knowledge-Based Systems, 2015, 83(1): 1-12.
|
32 |
CHICCO D, JURMAN G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation[J]. BMC Genomics, 2020, 21(1): 1-13.
|
33 |
BENES M, ZITOVA B. Performance evaluation of image segmentation algorithms on microscopic image data[J]. Journal of Microscopy, 2015, 257(1): 65-85.
|