1 |
FAN X. Item response theory and classical test theory: an empirical comparison of their item/person statistics[J]. Educational and Psychological Measurement, 1998, 58(3): 357-381.
|
2 |
DE LA TORRE J. DINA model and parameter estimation: a didactic[J]. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115-130.
|
3 |
HARTZ M C. A Bayesian framework for the unified model for assessing cognitive abilities: blending theory with practicality[J]. American Journal of Gastroenterology, 2002, 95(4): 906-909.
|
4 |
CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-268.
|
5 |
HAWKINS W J, HEFFERNAN N T. Using similarity to the previous problem to improve Bayesian knowledge tracing[C]//Proceedings of the Workshops held at Educational Data Mining 2014(WSEDM 2014). London: CEUR-WS, 2014: 136-140.
|
6 |
AGARWAL D, BAKER R, MURALEEDHARAN A. Dynamic knowledge tracing through data driven recency weights[C]//The 13th International Conference on Educational Data Mining. Morocco: Open Access, 2020: 725-729.
|
7 |
PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[J]. Computer Science, 2015, 3(3): 19-23.
|
8 |
YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale. London: ACM, 2018: 1-10.
|
9 |
MINN S, YI Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing[C]//2018 IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 1182-1187.
|
10 |
ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. Perth: ACM, 2017: 765-774.
|
11 |
SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239 - 8245.
|
12 |
LIU Q, HUANG Z, YIN Y, et al. EKT: Exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(1): 100-115.
|
13 |
TORRE J, DOUGLAS J A. Higher-order latent trait models for cognitive diagnosis[J]. Psychometrika, 2004, 69(3): 333-353.
|
14 |
DE L, SONG H. Simultaneous estimation of overall and domain abilities: a higher-order IRT model approach[J]. Applied Psychological Measurement, 2009, 33(8): 620-639.
|
15 |
LIU Q, WU R Z, CHEN E H, et al. Fuzzy cognitive diagnosis for modelling examinee performance[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(4): 1-26.
|
16 |
WANG F, LIU Q, CHEN E, et al. Neural cognitive diagnosis for intelligent education systems[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 6153-6161.
|
17 |
王炼红,刘畅,周熊,等. 基于学习者认知反应模型的认知诊断方法, CN202110122198.0[P]. 2021-05-07.
|
18 |
GELFAND A E, HILLS S E, RACINE-POON A. Illustration of Bayesian inference in normal data models using Gibbs sampling[J]. Journal of the American Statistical Association, 1990, 85(412): 972-985.
|
19 |
WEN H, DING G, LIU C, et al. Matrix factorization meets cosine similarity: addressing sparsity problem in collaborative filtering recommender system[C]//The 16th Asia-Pacific Web Conference. Cham: Springer, 2014: 306-317.
|
20 |
BAG S, KUMAR S K, TIWARI M K. An efficient recommendation generation using relevant Jaccard similarity[J]. Information Sciences, 2019, 483: 53-64.
|
21 |
SUBAKAN C, RAVANELLI M, CORNELL S, et al. Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 21-25.
|
22 |
SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//Advances in Neural Information Processing Systems 20(NIPS 2007). Vancouver: ACM, 2007: 1257-1264.
|