1 |
XU G Q, BAI H P, XING J, et al. SG-PBFT: A secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles[J]. Journal of Parallel and Distributed Computing, 2022, 164: 1-11.
|
2 |
ZHAO B, JI S, LEE W H, et al. A large-scale empirical study on the vulnerability of deployed IoT devices[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(3): 1826-1840.
|
3 |
QIAO H, NOVIKOV B, BLECH J O. Concept drift analysis by dynamic residual projection for effectively detecting botnet cyber-attacks in IoT scenarios[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6): 3692-3701.
|
4 |
WANG Q, WANG D, CHENG C, et al. Quantum2fa: efficient quantum-resistant two-factor authentication scheme for mobile devices[J/OL]. IEEE Transactions on Dependable and Secure Computing, 2021. DOI: 10.1109/TDSC.2021.3129512 .
|
5 |
MIAO Y, CHEN C, PAN L, et al. Machine learning-based cyber attacks targeting on controlled information: a survey[J]. ACM Computing Surveys(CSUR), 2021, 54(7): 1-36.
|
6 |
陈书仪, 刘亚丽, 林昌露, 等. 面向物联网的轻量级可验证群组认证方案[J]. 电子学报, 2022, 50(4): 990-1001.
|
|
CHEN Shu-yi, LIU Ya-li, LIN Chang-lu, et al. Lightweight verifiable group authentication scheme for the internet of things[J]. Acta Electronica Sinica, 2022, 50(4): 990-1001. (in Chinese)
|
7 |
DOSHI K, YILMAZ Y, ULUDAG S. Timely detection and mitigation of stealthy DDoS attacks via IoT networks[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2164-2176.
|
8 |
JOSHI C, RANJAN R K, BHARTI V. A fuzzy logic based feature engineering approach for botnet detection using ANN[J/OL]. Journal of King Saud University-Computer and Information Sciences, 2021. DOI: 10.1016/j.jksuci.2021.06.018 .
|
9 |
PALMIERI F. Network anomaly detection based on logistic regression of nonlinear chaotic invariants[J]. Journal of Network and Computer Applications, 2019, 148: 102460-102473.
|
10 |
IKRAM S T, PRIYA V, ANBARASU B, et al. Prediction of IIoT traffic using a modified whale optimization approach integrated with random forest classifier[J]. The Journal of Supercomputing, 2022, 78(8): 10725-10756.
|
11 |
MAJUMDAR P, SINGH A, PANDEY A, et al. A deep learning approach against botnet attacks to reduce the interference problem of IoT[M]//Intelligent Computing and Applications. Singapore: Springer, 2021: 645-655.
|
12 |
吴迪, 方滨兴, 崔翔, 等. BotCatcher: 基于深度学习的僵尸网络检测系统[J]. 通信学报, 2018, 39(8): 18-28.
|
|
WU Di, FANG Bin-xing, CUI Xiang, et al. BotCatcher: botnet detection system based on deep learning[J]. Journal on Communications, 2018, 39(8): 18-28. (in Chinese)
|
13 |
牛伟纳, 蒋天宇, 张小松, 等. 基于流量时空特征的fast-flux僵尸网络检测方法[J]. 电子与信息学报, 2020, 42(8): 1872-1880.
|
|
NIU Wei-na, JIANG Tian-yu, ZHANG Xiao-song, et al. Fast-flux botnet detection method based on spatiotemporal feature of network traffic[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1872-1880. (in Chinese)
|
14 |
朱艳. 优化觅食算法改进支持向量机的僵尸网络检测模型研究[D]. 兰州: 兰州大学, 2018.
|
|
ZHU Yan. Research on Botnet Detection Model Based on Support Vector Machine Improved by Optimal Foraging Algorithm[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
|
15 |
TORRES J L G, CATANIA C A, VEAS E. Active learning approach to label network traffic datasets[J]. Journal of Information Security and Applications, 2019, 49: 102388-102400.
|
16 |
Al S, DENER M. STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment[J]. Computers & Security, 2021, 110: 102435-102455.
|
17 |
KANNANGARA K K P M, ZHOU W, DING Z, et al. Investigation of feature contribution to shield tunneling-induced settlement using shapley additive explanations method[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4): 1052-1063.
|
18 |
GAN M, ZHANG L. Iteratively local Fisher score for feature selection[J]. Applied Intelligence, 2021, 51(8): 6167-6181.
|
19 |
杨宏宇, 袁海航, 张良. 基于攻击图的主机安全评估方法[J]. 通信学报, 2022, 43(2): 89-99.
|
|
YANG Hong-yu, YUAN Hai-hang, ZHANG Liang. Host security assessment method based on attack graph[J]. Journal on Communications, 2022, 43(2): 89-99. (in Chinese)
|
20 |
杨宏宇, 张旭高. 基于自修正系数修匀法的网络安全态势预测[J]. 通信学报, 2020, 41(5): 196-204.
|
|
YANG Hong-yu, ZHANG Xu-gao. Self-corrected coefficient smoothing method based network security situation prediction[J]. Journal on Communications, 2020, 41(5): 196-204. (in Chinese)
|
21 |
ZHU D, WANG R, DUAN J, et al. Comprehensive weight method based on game theory for identify critical transmission lines in power system[J]. International Journal of Electrical Power & Energy Systems, 2021, 124: 106362-106369.
|
22 |
ZELENKOV Y, VOLODARSKIY N. Bankruptcy prediction on the base of the unbalanced data using multi-objective selection of classifiers[J]. Expert Systems with Applications, 2021, 185: 115559-115570.
|
23 |
YANG H Y, ZHANG Z X, XIE L X, et al. Network security situation assessment with network attack behavior classification[J]. International Journal of Intelligent Systems, 2022, 37(10): 6909-6927.
|
24 |
YANG H Y, ZENG R Y, XU G Q, et al. A network security situation assessment method based on adversarial deep learning[J]. Applied Soft Computing, 2021, 102: 107096-107104.
|
25 |
ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimization algorithm[J]. Artificial Intelligence Review, 2020, 53(3): 2237-2264.
|
26 |
YANG Z, LIU X, LI T, et al. A systematic literature review of methods and datasets for anomaly-based network intrusion detection[J]. Computers & Security, 2022, 116: 102675-102694.
|
27 |
张鑫, 李占山. 自然进化策略的特征选择算法研究[J]. 软件学报, 2020, 31(12): 3733-3752.
|
|
ZHANG Xin, LI Zhan-shan. Research on feature selection algorithm based on natural evolution strategy[J]. Journal of Software, 2020, 31(12): 3733-3752. (in Chinese)
|
28 |
WANG X L, GONG J, SONG Y, et al. Adaptively weighted three-way decision oversampling: A cluster imbalanced-ratio based approach[J/OL]. Applied Intelligence, 2022. DOI: 10.1007/s10489-022-03394-7 .
|
29 |
IDAKWO G, THANGAPANDIAN S, LUTTRELL J, et al. Structure–activity relationship-based chemical classification of highly imbalanced Tox21 datasets[J]. Journal of Cheminformatics, 2020, 12(1): 1-19.
|
30 |
ROFFO G, MELZI S, CASTELLANI U, et al. Infinite feature selection: a graph-based feature filtering approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4396-4410.
|
31 |
LI A D, XUE B, ZHANG M. Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies[J]. Applied Soft Computing, 2021, 106: 107302-107339.
|
32 |
LIU W, WANG J. Recursive elimination–election algorithms for wrapper feature selection[J]. Applied Soft Computing, 2021, 113: 107956-107968.
|