
中国空间站的微波星地时频比对技术及其初步试验验证和分析
郭燕铭, 高帅和, 潘志兵, 王沛, 龚学文, 宋坤, 周晨, 张文颖, 陈晓锋, 白燕, 高玉平, 卢晓春, 张首刚
电子学报 ›› 2024, Vol. 52 ›› Issue (4) : 1239-1249.
中国空间站的微波星地时频比对技术及其初步试验验证和分析
Microwave Satellite-Ground Time-Frequency Comparison Techniques Based on the China Space Station: Initial Testing Validation and Analysis
高精度时频比对是现代科学技术的核心需求之一.然而,现有的技术受限于比对系统测量水平和链路系统误差处理算法,严重限制了时间比对性能的提升.针对这些问题,本研究搭建了基于中国空间站的高精度星地微波时频比对系统,并提出了一种基于双向测量的空间站-地面时频比对技术(三频模式),包括了对各项链路系统误差精细化建模新方法.通过对不同星地时频比对场景的仿真模拟发现,在配置高精度原子钟(10-15~10-17)进行星地时频比对的场景下,经过本文算法优化后的比对长期性能仍可达与原本星地时钟相近的性能.利用中国空间站所搭载的氢钟与地面氢钟进行初步比对试验结果表明,在300 s可视弧段内的空间站-地面时间比对精度可达到10.77 ps,相应的ADEV(Allan DEViation)达到9.992 1×10-14@100 s,与仿真模拟结果大致吻合.本研究可为精密时频同步技术提供了新的理论依据和技术参考.
High-precision time-frequency comparison is a crucial demand in modern science and technology. Yet, the performance of current technologies is significantly hindered by the measurement capabilities of comparison systems and the error processing algorithms of link systems. Addressing these challenges, this study establishes a high-precision satellite-ground microwave time-frequency comparison system based on the China Space Station (CSS), introducing a novel satellite-ground time-frequency comparison technique that employs two-way measurements (tri-frequency mode) and includes advanced methods for detailed modeling of link system errors. Simulations across various satellite-ground time-frequency comparison scenarios reveal that, even with high-precision clocks (10-15 to 10-17), the long-term performance of the comparison, optimized through our algorithm, can achieve near-original satellite-ground clock performance. Preliminary comparison tests using the hydrogen maser clocks on the CSS and the ground demonstrate that, within a 300-second visibility arc, CSS-ground time-frequency comparison precision can reach 10.77 ps, with an ADEV (Allan Deviation) of 9.992 1×10-14@100 s, closely matching simulation results. This research provides new theoretical foundations and technical references for precision time-frequency synchronization technology.
中国空间站 / 原子钟 / 星地微波链路 / 时频比对 / 双向测量 {{custom_keyword}} /
China Space Station / atomic clock / satellite-ground microwave link / time-frequency comparison / two-way measurement {{custom_keyword}} /
表1 不同轨道卫星的摄动力量级(面质比约为0.01 m 2 /kg) |
轨道类型 | 摄动力量级 | ||||||
---|---|---|---|---|---|---|---|
非球形 | 日月引力 | 大气阻力 | 太阳辐射 | 潮汐 | |||
| 其他项 | 日 | 月 | ||||
LEO | 10-3 | 10-7~10-8 | 10-8 | 10-7 | 10-6~10-10 | 10-8 | 10-8 |
MEO | 10-4 | 10-7 | 10-6 | 10-6 | <10-10 | 10-7 | 10-9 |
GEO | 10-4 | 10-7 | 10-6 | 10-5 | <10-10 | 10-7 | 10-8 |
表2 仿真方案及配置 |
编号 | 试验方案 | 试验配置 |
---|---|---|
方案1 | 空间站氢钟(2×10-15@1 day)+地面站氢钟(4×10-15@1 day)+三频模式(载波) | 航天器轨道: 空间站轨道(http://www.cmse.gov.cn/gfgg/zgkjzgdcs/) 轨道姿态误差: 0.2° 精密定轨(Precision Orbit Determination,POD)误差: 10 cm 微波载荷相位中心标定误差:3 mm 大气参数误差: 温度=0.5 oC,湿压=0.5 hPa,干压=0.5 hPa 地面站位置: 西安(34,108,550) 载波设备测量精度:约0.5 ps(接微波钟或光钟),约4 ps(接氢钟) 仿真试验时长: 3 day,采样时间: 1 s |
方案2 | 空间站氢钟(2×10-15@1 day)+地面站光钟(4×10-18@1 day)+三频模式(载波) | |
方案3 | 空间站微波钟(2×10-16@1 day)+地面站光钟(4×10-18@1 day)+三频模式(载波) | |
方案4 | 空间站光钟(3×10-17@1 day)+地面站光钟(4×10-18@1 day)+三频模式(载波) |
表3 典型时间间隔的星地时频比对精度统计 (ps) |
编号 | 时频比对精度(300 s) | 时频比对精度(10 000 s) | 时频比对精度(86 400 s) | |||
---|---|---|---|---|---|---|
原始钟差 | 解算钟差 | 原始钟差 | 解算钟差 | 原始钟差 | 解算钟差 | |
方案1 | 1.932 8 | 9.941 6 | 11.126 7 | 14.867 0 | 30.593 6 | 31.616 9 |
方案2 | 0.698 3 | 3.798 2 | 4.047 6 | 5.561 2 | 14.809 9 | 15.286 6 |
方案3 | 0.175 6 | 0.623 3 | 1.014 7 | 1.185 8 | 2.531 1 | 2.611 3 |
方案4 | 0.018 2 | 0.596 9 | 0.102 6 | 0.609 5 | 0.367 1 | 0.705 6 |
表4 典型时间间隔的星地时频比对频率稳定度统计 |
编号 | 频率稳定度(100 s) | 频率稳定度(10 000 s) | 频率稳定度(86 400 s) | |||
---|---|---|---|---|---|---|
原始钟差 | 解算钟差 | 原始钟差 | 解算钟差 | 原始钟差 | 解算钟差 | |
方案1 | 5.621 1×10-14 | 9.114 3×10-14 | 6.076 4×10-15 | 6.122 3×10-15 | 6.125 4×10-15 | 6.126 0×10-15 |
方案2 | 1.993 2×10-14 | 6.187 6×10-14 | 2.185 4×10-15 | 2.265 3×10-15 | 1.832 6×10-15 | 1.834 0×10-15 |
方案3 | 5.000 5×10-15 | 1.156 8×10-14 | 4.637 1×10-16 | 4.758 4×10-16 | 1.632 2×10-16 | 1.632 3×10-16 |
方案4 | 5.226 7×10-16 | 1.044 1×10-14 | 6.195 7×10-17 | 1.209 7×10-16 | 2.856 1×10-17 | 3.050 5×10-17 |
1 |
National Institute of Standards and Technology (NIST). A walk through time the evolution of time measurement through the ages[EB/OL]. (2009-08-12)[2023-10-20].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
ELY T,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
杨文可, 孟文东, 韩文标, 等. 欧洲空间原子钟组ACES与超高精度时频传递技术新进展[J]. 天文学进展, 2016, 34(2): 221-237.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
高帅和, 张首刚, 潘志兵, 等. 一种用于空间光学频率信号稳定度评估的微波双向测量系统[J]. 电子学报, 2023, 51(8): 2043-2049.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
单荃, 李培佳, 樊敏, 等. 火星探测器动力学模型优化及“天问一号”探测器定轨研究[J]. 天文学进展, 2023, 41(2): 279-291.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
陈宏宇, 吴会英, 周美江, 等. 微小卫星轨道工程应用与STK仿真[M]. 北京: 科学出版社, 2016: 71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
孙乐园. 导航星座星间链路时间基准自主建立与维持[D]. 长沙: 国防科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |