[1] Sinno Pan J L, Yang Q.A survey on transfer learning[J].IEEE Trans, 2009, KDE-22(10):1345-1359.[2] 于重重, 田蕊, 谭励, 等.非平衡样本分类的集成迁移学习算法[J].电子学报, 2012, 40(7):1358-1363. YU Chong-chong, TIAN Rui, TAN Li, et al.Integrated transfer learning algorithmic for unbalanced samples classification[J].Acta Electronica Sinica, 2012, 40(7):1358-1363.(in Chinese)[3] 胡文军, 王士同.隐私保护的SVM快速分类方法[J].电子学报, 2012, 40(2):280-286. HU Wen-Jun, WANG Shi-tong.Fast classification approach of support vector machine with privacy preservation[J].Acta Electronica Sinica, 2012, 40(2):280-286.(in Chinese) [4] Wu P, Dietterich T G.Improving SVM accuracy by training on auxiliary data sources[A].Proc ICML[C].New York:ACM Press, 2004.110-117.[5] Gao J, Fan W, Jiang J, Han J W.Knowledge transfer via multiple model local structure mapping[A].Proc SIGKDD[C].New York:ACM Press, 2008.312-324.[6] Quanz B, Huan J.Large margin transductive transfer learning[A].Proc CIKM[C].New York:ACM Press, 2009.1327-1336.[7] Bruzzone L, Marconcini M.Domain adaptation problems:a DASVM classification technique and a circular validation strategy[J].IEEE Trans, 2010, PAMI-32(5):770-787.[8] Pan S J L, Tsang I W, Kwok J T, et al.Domain adaptation via transfer component analysis[J].IEEE Trans, 2011, NN-22(2):199-210.[9] 邓乃杨, 田英杰.数据挖掘的新方法—支持向量机[M].北京:科学出版杜, 2004.4-19. DENG Nai-yang, TIAN Ying-jie.New Method in Data Mining:Support Vector Machine[M].Beijing:Science Press, 2004.4-19.(in Chinese) |