基于模糊识别和支持向量机的联合Rootkit动态检测技术研究

李鹏;;王汝传;;高德华

电子学报 ›› 2012, Vol. 40 ›› Issue (1) : 115-120.

PDF(794 KB)
PDF(794 KB)
电子学报 ›› 2012, Vol. 40 ›› Issue (1) : 115-120. DOI: 10.3969/j.issn.0372-2112.2012.01.019
学术论文

基于模糊识别和支持向量机的联合Rootkit动态检测技术研究

  • 李鹏1,2,3, 王汝传1,2,3, 高德华1
作者信息 +

Research on Rootkit Dynamic Detection Based on Fuzzy Pattern Recognition and Support Virtual Machine Technology

  • LI Peng1,2,3, WANG Ru-chuan1,2,3, GAO De-hua1
Author information +
文章历史 +

摘要

针对Rootkit恶意代码动态检测技术进行研究.总结出典型Rootkit恶意程序动态行为所调用的系统API函数.实时统计API调用序列生成元并形成特征向量,通过模糊隶属函数和模糊权向量,采用加权平均法得到模糊识别的评估结果;基于层次的多属性支持向量机分析法构建子任务;基于各个动态行为属性的汉明距离定位Rootkit的类型.提出的动态检测技术提高了自动检测Rootkit的准确率,也可以用于检测未知类型恶意代码.

Abstract

Dynamic detection technology of Rootkit malicious code has been studied.It summarizes typical dynamic system API functions which are called by Rootkit malicious codes.It extracts behavioural characters of the typical system API functional series accompany with the running of malicious code,forms feature vectors by counting up the generating elements important degree of system call series,uses fuzzy membership function and normalization fuzzy weights vector,and comes to the fuzzy pattern recognition conclusion with the use of weighted averaging method.It exactly locates the types of Rootkit malicious code based on the analysis method of layered multi-attributes support virtual machine,according to the subtasks constructed by the independent API system call behaviours,and with the calculation of hamming distance of dynamic behaviour properties.Experiments indicates the proposed dynamic detection method of combining fuzzy pattern recognition with support virtual machine technology not only improves the accuracy rate of Rootkit automatic detection but also has the ability of detecting the previous unknown type malicious code.

关键词

网络安全 / 恶意代码 / 模糊识别 / 支持向量机 / API系统调用

Key words

network security / malicious code / fuzzy pattern recognition / support virtual machine / application programming interface system call

引用本文

导出引用
李鹏;;王汝传;;高德华. 基于模糊识别和支持向量机的联合Rootkit动态检测技术研究[J]. 电子学报, 2012, 40(1): 115-120. https://doi.org/10.3969/j.issn.0372-2112.2012.01.019
LI Peng;;WANG Ru-chuan;;GAO De-hua. Research on Rootkit Dynamic Detection Based on Fuzzy Pattern Recognition and Support Virtual Machine Technology[J]. Acta Electronica Sinica, 2012, 40(1): 115-120. https://doi.org/10.3969/j.issn.0372-2112.2012.01.019
中图分类号: TP393.08   

基金

国家自然科学基金 (No.60973139,No.61170065,No.61171053,No.61100199,No.60903181,No.61003039,No.61003236); 江苏省科技支撑计划 (工业)项目 (No.BE2010197,No.BE2010198); 省属高校自然科学研究重大项目 (No.11KJA520001); 江苏省高校自然科学基础研究项目 (No.10KJB520013,No.10KJB520014); 高校科研成果产业化推进工程项目 (No.JH10-14); 江苏高校科技创新计划项目 (No.CX10B-196Z,No.CX10B-199Z); 江苏省六大高峰人才项目 (No.2008118); 教育部高等学校博士学科点专项科研基金 (No.20103223120007); 江苏省计算机信息处理技术重点实验室基金 (No.KJS1022)
PDF(794 KB)

2155

Accesses

0

Citation

Detail

国家自然科学基金(No.60973139,No.61170065,No.61171053,No.61100199,No.60903181,No.61003039,No.61003236);江苏省科技支撑计划(工业)项目(No.BE2010197,No.BE2010198);省属高校自然科学研究重大项目(No.11KJA520001);江苏省高校自然科学基础研究项目(No.10KJB520013,No.10KJB520014);高校科研成果产业化推进工程项目(No.JH10-14);江苏高校科技创新计划项目(No.CX10B-196Z,No.CX10B-199Z);江苏省六大高峰人才项目(No.2008118);教育部高等学校博士学科点专项科研基金(No.20103223120007);江苏省计算机信息处理技术重点实验室基金(No.KJS1022)
段落导航
相关文章

/