小时间尺度网络流量混沌性分析及趋势预测

温祥西, 孟相如, 马志强, 张永春

电子学报 ›› 2012, Vol. 40 ›› Issue (8) : 1609-1616.

PDF(1135 KB)
PDF(1135 KB)
电子学报 ›› 2012, Vol. 40 ›› Issue (8) : 1609-1616. DOI: 10.3969/j.issn.0372-2112.2012.08.018
学术论文

小时间尺度网络流量混沌性分析及趋势预测

  • 温祥西1, 孟相如1, 马志强1, 张永春2
作者信息 +

The Chaotic Analysis and Trend Prediction on Small-Time Scale Network Traffic

  • WEN Xiang-xi1, MENG Xiang-ru1, MA Zhi-qiang1, ZHANG Yong-chun2
Author information +
文章历史 +

摘要

小时间尺度的网络流量的混沌性被噪声掩盖难以预测,本文通过局部投影降噪得到可预测的混沌性流量趋势.针对网络流量存在的时变性和长周期性,提出一种最优样本子集在线模糊最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)预测方法:以与预测样本时间上以及欧式距离最近的样本点构成最优样本子集,并对其模糊化处理,最后采用模糊LSSVM训练获得预测模型.通过分块矩阵降低预测模型在线更新的运算复杂度.对真实网络流量的降噪以及预测的结果表明本文方法能够快速准确的预测网络流量趋势.

Abstract

The chaotic performance of small-time scale network traffic was covered by noise,which made the traffic unpredictable.This paper introduces the local projection to denosie network traffic;a chaotic and predictable traffic trend is obtained.As the network traffic series is long-period and time-varying,a new method named optimal training subset online fuzzy least squares support vector machines (OTSOF-LSSVM) is proposed.Samples temporal and distance nearest to prediction sample are chosen as optimal training subset,and the subset are fuzzified.On this basis,the prediction model is established by fuzzy LSSVM.The model update computational complexity is reduced by partitioned matrix calculation.The noise reduction and trend prediction on network traffic shows the proposed method can predict the trend quickly and exactly.

关键词

网络流量 / 趋势预测 / 混沌理论 / 最优样本子集 / 最小二乘支持向量机

Key words

network traffic / trend prediction / chaotic theory / optimal training subset / least squares support vector machine (LSSVM)

引用本文

导出引用
温祥西, 孟相如, 马志强, 张永春. 小时间尺度网络流量混沌性分析及趋势预测[J]. 电子学报, 2012, 40(8): 1609-1616. https://doi.org/10.3969/j.issn.0372-2112.2012.08.018
WEN Xiang-xi, MENG Xiang-ru, MA Zhi-qiang, ZHANG Yong-chun. The Chaotic Analysis and Trend Prediction on Small-Time Scale Network Traffic[J]. Acta Electronica Sinica, 2012, 40(8): 1609-1616. https://doi.org/10.3969/j.issn.0372-2112.2012.08.018
中图分类号: TP393   

参考文献

[1] Jun Jiang,Symeon Papavassiliou.Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies[J].Computer Communications,2006,29(10):1627-1638.

[2] 罗骞,夏靖波,王焕彬.混沌-支持向量机回归在流量预测中的应用研究[J].计算机科学,2009,36(7):244-246. Luo Yun-qian,Xia Jing-bo,Wang Huan-bin.Application of Chaos-support Vector Machine Regression in Traffic Prediction[J].Computer Science,2009,36(7):244-246.(in Chinese)

[3] He Yu-jun,Zhu Youchan,Duan Dong-xing.Research on hybrid ARIMA and support vector machine model in short term load forecasting.Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06).Jinan P.R.China,2006,Vol.1:804-809.

[4] Chen Bor-Sen,Peng Sen-Chueh,Wang Ku-Chen.Traffic Modeling,prediction and congestion control for high-speed networks:a fuzzy AR approach[J].IEEE Tans On Fuzzy Systems,2000,8(5):491-508.

[5] 姜明,吴春明,张,胡大民.网络流量预测中的时间序列模型比较研究[J].电子学报,2009,37(11):2353-2358. Jiang Ming,et al.Research on the comparison of time series models for network traffic prediction[J].Acta Electronica Sinica,2009,37(11):2353-2358.(in Chinese)

[6] 姚奇富,李翠凤,马华林,张森.灰色系统理论和马尔柯夫链相结合的网络流量预测方法[J].浙江大学学报(理学版),2007,34(4):396-400. Yao Qi-fu,Li Cui-feng,Ma Hua-lin,Zhang Sen.Novel network traffic forecasting algorithm based on grey model and Markov chain[J].Journal of Zhejiang University (Science Edition),2007,34(4):396-400.(in Chinese)

[7] Chen Y,Yang B.Small-time scale network traffic prediction based on flexible neural tree[J].Applied Soft Computing Journal 2012,12(1):274-279.

[8] Dong-Chul Park.Prediction of network traffic using dynamic bilinear recurrent neural network.Fifth International Conference on Natural Computation.Tianjin China,2009,Vol.2:419-423.

[9] 陈晓天,张顺颐,田婷婷.基于BP神经网络的IP网络流量预测[J].南京邮电大学学报(自然科学版),2010,30(2):16-21. Chen Xiao-tian,Zhang Shun-yi,Tian Ting-ting.Internet traffic forecasting based on BP neural network[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science),2010,30(2):16-21.(in Chinese)

[10] 陆锦军,王执铨.基于混沌特性的网络流量预测[J].南京航空航天大学学报,2006,38(2):217-221. Lu Jin-jun,et al.Prediction of network traffic flow based on chaos characteristics[J].Journal of Nanjing University of Aeronautics &Astronautic,2006,38(2):217-221.(in Chinese)

[11] Bao Rong Chang,Hsiu Fen Tsai.Improving network traffic analysis by foreseeing data-packet-flow with hybrid fuzzy-based model prediction[J].Expert Systems with Applications 2009,36(3):6960-6965.

[12] Wei-Chiang Hong.Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J].Neurocomputing 2011,74(12-13):2096-2107.

[13] 叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. Ye Mei-Ying,Wang Xiao-Dong,Zhang Hao-Ran.Chaotic time series forecasting using online least squares support vector machine regression[J].Acta Physica Sinica,2005,54(6):2568-2573.(in Chinese)

[14] 肖支才,王杰,等.基于在线LSSVM算法的变参数混沌时间序列预测[J].航空计算技术,2010,40(3):29-33. Xiao Zhi-cai,Wang Jie,et al..Predict the time series of the parameter-varying chaotic system based on recursive lease square support vector machine(RLS-SVM)[J].Aeronautical Computing Technique,2010,40(3):29-33.(in Chinese)

[15] Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Math,1987,898(8):175-198.

[16] J A K Suykens,J Vandewalt.Least squares support vector machine classifiers[J].Neural Processing letters,1999,9(3):293-300.

[17] M T Rosenstein,J J Collins,C J Deluca.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D,1993,65(1-2):117-134.

[18] 韩敏,项牧.局部投影去噪的一种改进的邻域选取方法[J].系统工程学报,2009,24(8):392-398. HAN Min,XIANG Mu.An improved neighborhood selection method for local projection noise reduction[J].Journal of Systems Engineering,2009,24(8):392-398.(in Chinese)

[19] Ephraim Y,Trees H L V.A signal subspace approach for speech enhancement[J].IEEE Trans on Speech and Audio Processing,1995,3(7):251-261.

[20] Stoer J,Bulirsch R.Introduction to Numerical Analysis[M].New York:Springer-Verlag,1993.

基金

国家自然科学基金 (No.61003252); 全军军事学研究生课题 (No.2011JY002-524); 空军工程大学研究生创新基金 (No.201105)

PDF(1135 KB)

3255

Accesses

0

Citation

Detail

段落导航
相关文章

/