电子学报 ›› 2013, Vol. 41 ›› Issue (1): 72-76.DOI: 10.3969/j.issn.0372-2112.2013.01.014

• 学术论文 • 上一篇    下一篇

高效的可证明安全的无证书聚合签名方案

杜红珍1, 黄梅娟1, 温巧燕2   

  1. 1. 宝鸡文理学院数学系,陕西宝鸡 721013;
    2. 北京邮电大学网络与交换技术国家重点实验室,北京 100876
  • 收稿日期:2011-12-28 修回日期:2012-08-14 出版日期:2013-01-25
    • 作者简介:
    • 杜红珍 女,1978年12月出生,陕西扶风人,副教授、博士,主要从事密码学、数字签名研究. E-mail:hongzhendu@163.com 黄梅娟 女,1980年3月出生,陕西岐山人,讲师、硕士,主要从事密码学研究.
    • 基金资助:
    • 国家自然科学基金 (No.61170270); 陕西省自然科学基础基金 (No.2010JQ8027); 陕西省教育厅科学研究基金 (No.12JK1003)

Efficient and Provably-Secure Certificateless Aggregate Signature Scheme

DU Hong-zhen1, HUANG Mei-juan1, WEN Qiao-yan2   

  1. 1. Department of Mathematics, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China;
    2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2011-12-28 Revised:2012-08-14 Online:2013-01-25 Published:2013-01-25
    • Supported by:
    • National Natural Science Foundation of China (No.61170270); Natural Science Basic Foundation of Shaanxi Province (No.2010JQ8027); Scientific Research Foundation of Education Department of Shaanxi Province (No.12JK1003)

摘要: 利用双线性对构造了一个高效的无证书聚合签名方案,在随机预言机模型下给出了方案的安全性证明,其安全性基于计算Diffie-Hellman难题.与已有的无证书聚合签名方案相比,本文方案更能提高签名验证与传输效率,因聚合签名的验证只需要计算4个双线性对,签名的长度是固定的,仅有320bits,是目前最短的无证书聚合签名.

关键词: 无证书公钥密码体制, 聚合签名, 计算Diffie-Hellman难题, 双线性对

Abstract: This paper proposes an efficient certificateless aggregate signature scheme from bilinear pairings.Its security proof is given in the random oracle model and it can be reduced to computational Diffie-Hellman problem.Compared with the existing certificateless aggregate signature schemes,our scheme drastically improves the efficiency of signature communication and verification since the verification algorithm only requires 4 pairings,and the length of the signature generated by our scheme is only about 320 bits,which is the shortest certificateless aggregate signature.

Key words: certificateless public key cryptography, aggregate signature, computational Diffie-Hellman problem, bilinear pairings

中图分类号: