中心引力优化CFO算法研究

孟超, 孙知信

电子学报 ›› 2013, Vol. 41 ›› Issue (4) : 698-703.

PDF(851 KB)
PDF(851 KB)
电子学报 ›› 2013, Vol. 41 ›› Issue (4) : 698-703. DOI: 10.3969/j.issn.0372-2112.2013.04.012
学术论文

中心引力优化CFO算法研究

  • 孟超1, 孙知信1,2
作者信息 +

Research on Central Force Optimization Algorithm

  • MENG Chao1, SUN Zhi-xin1,2
Author information +
文章历史 +

摘要

中心引力优化算法(Central Force Optimization,CFO)是一种新型的基于天体动力学的多维搜索优化算法.该算法是一种确定性的优化算法,利用一组质子在万有引力作用下的运动,搜索决定空间的最优值,而这组质子按照两个来源于天体力学的迭代方程在空间移动.本文利用天体力学理论对该算法中质子运动方程做了深入的研究,并利用天体力学中万有引力定理对质子运动方程做了推导,建立起天体力学与CFO算法之间的联系,通过天体力学中数学分析的方法对该算法中质子收敛性能进行了分析,最后通过严格的数学推导证明出无论初始时质子是何种分布,CFO算法中所有的质子始终都会收敛于CFO空间的确定最优解.本文结论为了进一步深入研究该算法提供了理论基础.

Abstract

Central Force Optimization (CFO) is a new deterministic multi-dimensional search metaheuristic algorithm based on the metaphor of gravitational kinematics.CFO is a deterministic algorithm that explores a decision space by "flying" a group of "probes" whose trajectories are governed by two simple equations derived from the gravitational metaphor.The paper makes a thorough research on the probes move governed by the equations of gravitational motion through the Celestial Mechanics,establishing the relationship between CFO algorithm and Celestial Mechanics and analyzing CFO convergence through mathematics analysis of Celestial Mechanics.Finally,Whatever initial probes distribute,all the probes converge the deterministic result.It provides a theoretical base for further researching.

关键词

质子 / 中心引力优化 / 确定性算法 / 收敛性分析

Key words

probe / central force optimization / deterministic algorithm / analyse of convergence

引用本文

导出引用
孟超, 孙知信. 中心引力优化CFO算法研究[J]. 电子学报, 2013, 41(4): 698-703. https://doi.org/10.3969/j.issn.0372-2112.2013.04.012
MENG Chao, SUN Zhi-xin. Research on Central Force Optimization Algorithm[J]. Acta Electronica Sinica, 2013, 41(4): 698-703. https://doi.org/10.3969/j.issn.0372-2112.2013.04.012
中图分类号: TP393   

参考文献

[1] R A Formato.Central force optimization:A new metaheuristic with applications in applied electromagnetics[J].Progress in Electromagnetics Research PIER,2007,77 :425-449.
[2] S He,et al.Group search optimizer:An optimization algorithm inspired by animal s earching behavior[J].IEEE Transactions on Evolutionary Computation,2009,13(5): 973-990.
[3] 吴晓军,等.均匀搜索粒子群算法[J].电子学报,2011,39(6):695-702. WU Xiao-jun,et al.A uniform searching particle swarm optimization algorithm[J].Acta Electronica Sinica,2011,39(6):695-702.(in Chinese)
[4] Jing Cai,W David Pan.On fast and accurate block-based motion estimation algorith ms using particle swarm optimization[J].Information Sciences,2012,197(15):53-6 4.
[5] R F Tavares,et al.An ant colony optimization approach to a permutational flowsh op scheduling problem with outsourcing allowed[J].Computers & Operations Resea rch,2011,38(9):1286-1293.
[6] 苏兆品,蒋建国,梁昌勇,张国富.蚁群算法的几乎处处强收敛性分析[J].电子学报,2009, 37(8):1646-1650. SU Zhao-pin,JIANG Jian-guo,LIANG Chang-yong,ZHANG Guo-fu.An almost everywher e strong convergence proof for a class of ant colony algorithms[J].Acta Elec tronica Sinica,2009,37(8):1646-1650.(in Chinese)
[7] 雷秀娟,等.基于连接强度的PPI网络蚁群优化聚类算法[J].电子学报.2012 ,40(4):695-70 2. LEI Xiu-juan,et al.Joint strength based ant colony optimization clustering alg orithm for PPI networks[J].Acta Electronica Sinica,2012,40(4):695-702.(in Chin ese)
[8] Green II,et al.Training neural networks using central force optimization and par ticle swarm optimization:insights and comparisons[J].Expert Systems with Appli cations,2012,39(1):555-563.
[9] K R Mahmoud.Central force optimization:Nelder-Mead hybrid algorithm for rectang ular microstrip antenna design[J].Electromagnetics,2011,31(8):8866-8872.
[10] Ali Haghighi,Helena,et al.Detection of leakage freshwater and friction factor ca libration in drinking networks using central force optimization[J].Water Resou rce Manage,2012,26(8):2347-2363.
[11] R A Formato.Improved CFO algorithm for antenna optimization[J].Progress in Ele ctromagnetics Research,2010,19:405-425.
[12] V G Szebehely.Theory of orbits-The restricted problem of three bodies[J].Acad emic Press,New York,1969,13(2).
[13] E L Stiefel,G Scheifele.Linear and Regular Celestial Mechanics[M].Springer-Ve rlang,Berlin,1971.
[14] Siegel C J,Moser J K.Lectures on Celestial Mechanics[M].Springer-Verlang,Ber lin,1972.
[15] 李林森.引力常数随时间变化对双星轨道演变的长期效应[J].天文学报.2011,52(3):242 -250. LI Lin-sen.Secular effect of evolution of the orbits of binaries induced by the variation of gravitational constant with time[J].Acta Astronomica Sinica,2011 ,52(3):242-250.(in Chinese)
[16] 汤靖师,刘林.近地卫星运动的坐标系附加摄动在拟平均根数法中的处理[J].天文学报,20 10,51(1):75-84. TANG Jing-shi,et al.The application of Quasi-Mean-Element-Method to LEO un der additional perturbation due to change of coordinate system[J].Acta Astrono mica Sinica,2010,51(1):75-84.(in Chinese)
[17] Valsecchi,G B,et al.Resonant returns to close approaches:analytical theory[J]. Astronomy& Astrophysics,2003,408(3):1179-1196.
[18] Schweickart R,et al.Threat characterization:trajectory dynamics(White Paper 039) [DB/OL].http://arxiv.org/abs/physics/0608155,2006.

基金

国家自然科学基金 (No.60973140,No.61170276); 江苏省高校自然科学研究重大项目 (No.12KJA520003); 江苏省自然科学基金 (No.BK2009425)
PDF(851 KB)

2515

Accesses

0

Citation

Detail

段落导航
相关文章

/