[1] Dietterich T G,Lathrop R H,et al.Solving the multiple-instance problem with axi s-parallel rectangles[J].Artificial Intelligence,1997,89(1-2):31-71. [2] Maron O,Lozano-pérez T.A framework for multiple-instance learning[A].Procee dings of the 1997 Advances in Neural Information Processing Systems Conference [C].Cambridge,MA:MIT Press,1998.570-576. [3] Andrews S,Hofmann T,et al.Support vector machines for multiple-instance learnin g[A].Proceedings of the 2002 Advances in Neural Information Processing Systems Conference [C].Cambridge,MA:MIT Press,2003.561-568. [4] Chen Y,Wang J Z.Image categorization by learning and reasoning with regions[J] .Journal of Machine Learning Research,2004,5:913-939. [5] Chen Y,Bi J,et al.MILES:multiple-instance learning via embedded instance select ion[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28( 12):1931-1947. [6] Li Y F,Kwok J T,et al.A convex method for locating regions of interest with mult i-instance learning[A].Proceedings of the European Conference on Machine Lear ning and Principles and Practice of Knowledge Discovery in Databases [C].Bled, Slovenia:Springer,2009.15-30. [7] Li W J,Yeung D Y.MILD:multiple-instance learning via disambiguation[J].IEEE T ransactions on Knowledge and Data Engineering,2010,22(1):76-89. [8] Rahmani R,Goldman S A.MISSL:multiple-instance semi-supervised learning[A].Pr oceedings of the 23rd international conference on Machine learning[C].New York :ACM,2006.705-712. [9] Zhou Z H,Xu J M.On the relation between multi-instance learning and semi-super vised learning[A].Proceedings of the 24th international conference on Machine learning[C].New York:ACM,2007.1167-1174. [10] Wang H Y,Yang Q,et al.Adaptive p-posterior mixture-model kernels for multiple instance learning[A].Proceedings of the 25th international conference on Machi ne learning[C].New York:ACM,2008.1136-1143. [11] Zhou Z H,Sun Y Y,et al.Multi-instance learning by treating instances as non-II D samples[A].Proceedings of the 26th Annual International Conference on Machin e Learning[C].New York:ACM,2009.1249-1256. [12] Deselaers T,Ferrari V.A conditional random field for multiple-instance learning [A].Proceedings of the 27th International Conference on Machine Learning[C].New York:ACM,2010.21-24. [13] Fu Z,Robles-Kelly A,et al.MILIS:multiple instance learning with instance selec tion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33 (5):958-977. [14] 胡文军,王士同,等.适合大样本快速训练的最大夹角间隔核心集向量机[J].电子学报,2 011,39(5):1178-1184. HU Wen-jun,WANG Shi-tong,et al.Maximum vector-angular margin core vector mac hine suitable for fast training for large datasets[J].Acta Electronica Sinica, 2011,39(5):1178-1184.(in Chinese) [15] 朱孝开,杨德贵.基于推广能力测度的多类SVDD模式识别方法[J].电子学报,2009,37(3 ):464-469. ZHU Xiao-kai,YANG De-gui.Multi-class support vector domain description for pa ttern recognition based on a measure of expansibility[J].Acta Electronica Sini ca,2009,37(3):464-469.(in Chinese) |