轮廓查询是近年来信息服务领域的一个研究重点和热点.现有的三阶段算法TPAOSS (Three-Phase Algorithm for Optimizing Skyline Scalar)至少存在如下两个缺陷:(1)在TPAOSS算法的第3阶段中,当网络节点上的对象个数较多时,Bloom filter的长度将呈指数级增长,从而严重影响获取子空间重复值的效率以及占用内存空间的大小;(2)TPAOSS算法只考虑预处理阶段的时间代价,而没有考虑各网络节点进行局部或全局子空间轮廓查询计算的效率.为此,提出一种适合超对等网络(Super-Peer Architecture,SPA)的子空间轮廓查询方法EPSSQDN (Efficient Processing of Subspace Skyline Queries in Distributed Networks).EPSSQDN算法有效解决了TPAOSS算法的的两个主要性能问题,并且显著提高了SPA网络中的子空间轮廓查询处理的效率.此外,为了能够进一步降低子空间上轮廓查询的时间开销以及网络节点间的数据传输量,我们给出新颖且有效的优化策略.实验结果表明,EPSSQDN算法比TPAOSS算法更能够缩短SPA网络中子空间轮廓查询的时间开销.
Abstract
Skyline query has recently received a lot of attention in information service community.The TPAOSS (Three-Phase Algorithm for Optimizing Skyline Scalar) algorithm has two performance drawbacks:(1) in the third phase of TPAOSS,as the number of objects on net nodes increases,the length of bloom filter will increases exponentially,which will seriously influence the efficiency of obtaining replicated values and the occupation size of memory;(2) the TPAOSS algorithm does not consider the computation efficiency of local or global subspace skyline queries in each net node.Motivated by these facts,we propose EPSSQDN (Efficient Processing of Subspace Skyline Queries in Distributed Networks),an algorithm for efficient processing of subspace skyline queries in SPA distributed networks.Moreover,in order to further reduce the computation cost of subspace skyline queries and decrease the volume of data transferred,we present an efficient optimized techniques.Furthermore,we present extensive experiments that demonstrate our method is more advantageous than the TPAOSS algorithm.
关键词
轮廓查询 /
SUPER-PEER体系架构 /
信息服务 /
查询优化
{{custom_keyword}} /
Key words
skyline query /
SUPER-PEER architecture /
information service /
query optimization
{{custom_keyword}} /
中图分类号:
TP311.13
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S Borzsonyi,D Kossmann,K Stocker.The skyline operator[A].Proc IEEE ICDE '01[C].Heidelberg:IEEE Press,2001.421-430.
[2] 黄震华,王智慧,郭建奎,汪卫,施伯乐.有效预处理P2P网络中的子空间skyline查询[J].软件学报,2009,20(7):1825-1838. Z Huang,Z Wang,J Guo,W Wang,B Shi.Efficient preprocessing of subspace skyline queries in P2P networks[J].Journal of Software,2009,20(7):1825-1838.(in Chinese)
[3] P Wu,C Zhang,Y Feng,B Zhao,D Agrawal,A Abbadi.Parallelizing skyline queries for scalable distribution[A].Proc EDBT'06[C].Munich:Springer Verlag,2006.112-130.
[4] H Li,Q Tan,W Lee.Efficient progressive processing of skyline queries in peer-to-peer systems[A].Proc INFOSCALE'06[C].Hong Kong:ACM Press,2006.84-93.
[5] S Wang,B Ooi,A Tung,L Xu.Efficient skyline query processing on peer-to-peer networks[A].Proc ICDE'07[C].Istanbul:IEEE Press,2007.372-381.
[6] K Banafaa,R Li.Efficient algorithms for constrained subspace skyline query in structured peer-to-peer systems[A].Proc WAIM '12[C].Harbin:Springer Verlag,2012.334-345.
[7] 薛小平,张思东,张宏科,王小平,葛乐,尹琴.基于内容的发布订阅系统路由算法[J].电子学报,2008,36(5):953-961. X Xue,S Zhang,H Zhang,X Wang,L Ge,Q Yin.Content-based routing algorithms of the publish-subscribe systems[J].Acta Electronica Sinica,2008,36(5):953-961.(in Chinese)
[8] J Parreira,S Michel,G Weikum.P2P Dating:Real life inspired semantic overlay networks for web search[J].Information Processing and Management:An International Journal,2007,43(3):643-664.
[9] K Zhao,Y Tao,S Zhou.Efficient top-k processing in large-scaled distributed environments[J].Data & Knowledge Engineering,2007,63(2):315-335.
[10] 吴万明,吴毅坚,赵文耘.基于Chord网的语义Web Service发现[J].电子学报,2007,35(z2):152-155. W Wu,Y Wu,W Zhao.Chord-based semantic web service discovery[J].Acta Electronica Sinica,2007,35(z2):152-155.(in Chinese)
[11] X Liu,Y Yuan,W Wang,H Lu.Stabbing the sky:efficient skyline computation over sliding windows[A].Proc IEEE ICDE'05[C].Tokyo:IEEE Press,2005.502-513.
[12] Q Li,L Lopez,B Moon.Skyline index for time series data[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(6):669-684.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61272268,No.71171148); 教育部新世纪优秀人才支持计划 (No.NCET-12-0413); 同济大学中央高校基本科研业务费专项资金; 江苏省自然科学基金 (No.BK2010139)
{{custom_fund}}