电子学报 ›› 2013, Vol. 41 ›› Issue (9): 1772-1777.DOI: 10.3969/j.issn.0372-2112.2013.09.016

• 学术论文 • 上一篇    下一篇

基于稀疏约束最优化的ISAR相位自聚焦成像算法

徐刚, 张磊, 陈倩倩, 邢孟道   

  1. 西安电子科技大学雷达信号处理国防科技重点实验室, 陕西西安 710071
  • 收稿日期:2010-08-23 修回日期:2013-03-04 出版日期:2013-09-25 发布日期:2013-09-25
  • 作者简介:徐 刚 男,1987年出生于山东枣庄.2005年就读于西安电子科技大学,2009年获学士学位,现为西安电子科技大学雷达信号处理国家重点实验室在读博士研究生,主要研究方向:SAR和ISAR高分辨成像. E-mail:xugang0102@126.com
  • 基金资助:
    国家重点基础研究发展计划项目(No.2010CB731903)

Novel Autofocusing Algorithm for ISAR Imaging Based on Sparse Constraint

XU Gang, ZHANG Lei, CHEN Qian-qian, XING Meng-dao   

  1. National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi 710071, China
  • Received:2010-08-23 Revised:2013-03-04 Online:2013-09-25 Published:2013-09-25

摘要: 本文提出了一种基于稀疏约束的ISAR方位自聚焦算法,能够应用于稀疏孔径ISAR成像中.该算法利用ISAR图像的稀疏特征建立最小1范数成像模型,并将相位误差作为模型误差.然后通过数值迭代的方式进行自适应相位误差估计,最终获得聚焦良好的ISAR图像.同时,成像代价函数的建立基于矩阵模型,有利于采用方位FFT和矩阵的Hardmard乘积操作进行快速求解.由于利用稀疏约束,该方法在低信噪比的条件下仍然能够取得良好的聚焦结果.基于仿真数据和实测数据的结果验证了本文算法的有效性.

关键词: 逆合成孔径雷达, 稀疏孔径, 自聚焦, 稀疏约束

Abstract: In this paper,a novel autofocusing algorithm of inversed synthetic aperture radar (ISAR) imaging based on sparse constraint is proposed,which can be applied in sparse aperture ISAR imaging.In the scheme,taking the phase errors as model errors,the proposed approach exploits the sparsity prior of ISAR image to construct the minimum 1-norm image formation.Then numerical method is adopted to realize adaptive phase error estimation while well-focused ISAR image can finally be obtained.Meanwhile,the objective function of ISAR imaging is established based on matrix model,which can be conveniently solved using fast Fourier transform (FFT) and matrix Hardmard multiplication.Due to the utilization of sparsity restriction,the proposed approach can still be capable of performing well even in the case of low signal-to-noise ratio (SNR).The experimental results using both simulated data and measured data confirm the validation of the proposal.

Key words: inversed synthetic aperture radar (ISAR), sparse aperture, autofocusing, sparse constraint

中图分类号: