为了提高大数据文件的存取效率,满足各类用户的需求,通常采用对该文件进行分块、冗余副本等机制进行存储,关于设置块大小、副本个数和块部署等存储机制的研究一直是该领域研究重点.根据用户对内容块兴趣需求,我们定义了数据块的热度并提出了一种满足用户需求的存储数据块的最小服务成本策略(MCSB).在成本矩阵的基础上,通过引入与数据块热度相关的成本矩阵调整因子,使得热度较低的数据块被优先部署,实现了在不改变存储数据块的最小服务总成本的情况下,内容存取服务性能的提高.基于该策略,以Hadoop中的缺省数据块存储策略为控制组,通过在HDFS系统中实现MCSB,并对MCSB进行了较为详细的分析.实验结果显示MCSB策略能够在满足最小服务成本的情况下,具有更短的系统平均响应时间.进一步考虑到数据存储节点由服务器集群承担的事实,对基于不同负载下的数据存储策略进行了深入探讨,在分析现有机制对性能影响的基础上,给出了一种自适应的数据节点内的存储数据块的最小服务成本策略AMCSB,实验表明,本文所提出的AMCSB策略能够在降低服务成本的同时,有利于系统的负载均衡,并提高该系统的服务性能.
Abstract
Splitting a whole large file into some small blocks and distributedly deploying these block replications on severs can improve their application efficiency and meet users' demands.How to split a file,how many replications of a block should be created,and how to deploy these replications become the most critical issures in this field.In this paper,considering client's demands for each block,we introduce block-popularity and present a block deployment strategy according to it,called minimum cost of storing blocks (MCSB),which can satisfy users' requirement and minimum storage cost.In our strategy,through introducing cost adjustment factors of blocks,not only that lower hot blocks are assured to deploy earlier,but also the practical total storage cost are not exceed than the original case.To maintain the performance of service system,we study resource management methods in-depth among severs with different workloads and propose an adaptive MCSB strategy (AMCSB).We implement the MCSB (and AMCSB) in Hadoop and compare their performance with other related strategies.The experiment results show that MCSB fulfills minimum service cost and shortens average response time,and AMCSB realizes load balance among target servers.
关键词
云存储 /
数据块 /
MCSB /
AMCSB /
大数据
{{custom_keyword}} /
Key words
cloud storage /
data block /
MCSB /
AMCSB /
big data
{{custom_keyword}} /
中图分类号:
TP393
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Spillner Josef,Muller Johannes,Schill Alexander.Creating optimal cloud storage systems[J].Future Generation Computer Systems,2013,29(4):1062-1072.
[2] 李建江,崔健,王聃,等.MapReduce并行编程模型研究综述[J].电子学报,2011,39(11):2636-2643. Li Jianjiang,Cui Jian,Wan Dan,et al.Survey of MaqReduce parallel programming model[J].Acta Electronica Sinica,2011,39(11):2636-2643.(in Chinese)
[3] Zhang Dawei,Sun Fuquan,Cheng xu,et al.Research on Hadoop-based enterprise file cloud storage system [A].Proceedings of 2011 3rd International Conference on Awareness Science and Technology,iCAST 2011 [C].Dalian,China:IEEE Computer Society,2011.434-437.
[4] Wei Qingsong,Veeravalli Bharadwaj,Gong Bozhao,et al.CDRM:a cost-effective dynamic replication management scheme for cloud storage cluster [A].Proceedings of 2010 IEEE International Conference on Cluster Computing [C].Heraklion,Crete,Greece: Institute of Electrical and Electronics Engineers Inc,2010.188-196.
[5] He Dian,Liang Ying,Hang Zhi.Replicate distribution method of minimum cost in cloud storage for internet of things [A].Proceedingso of 2011 International Conference on Network Computing and Information Security,NCIS 2011 [C].Guilin,Guangxi,China:IEEE Computer Society,2011.89-92.
[6] Yuan Dong,Yang Yun,Liu Xiao,et al.A cost-effective strategy for intermediate data storage in scientific cloud workflow systems [A].Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing,IPDPS 2010 [C].Atlanta,GA,United States:IEEE Computer Society,2010.1-12.
[7] Li Wenhao,Yang Yun,Yuan Dong.A novel cost-effective dynamic data replication strategy for reliability in cloud data centres [A].Proceedings of 2011 Ninth IEEE International Conference on Dependable,Autonomic and Secure Computing [C].Sydney,Australia:IEEE Computer Society,2011.496-502.
[8] Chang Chiawei,Liu Pangfeng,Wu Janjan.Probability-based cloud storage providers selection algorithms with maximum availability [A].Proceedings of the International Conference on Parallel Processing [C].Pittsburgh,United States:Institute of Electrical and Electronics Engineers Inc,2012.199-208.
[9] Agarwala Sandip,Jadav Divyesh,Bathen Luis A.iCostale:Adaptive cost optimization for storage clouds [A].Proceedings of 2011 IEEE 4th International Conference on Cloud Computing,CLOUD 2011 [C].Washington,DC,United States:IEEE Computer Society,2011.436-443.
[10] Kim Shin-Gyu,Han Hyuck,Eom Hyeonsang,et al.Toward a cost-effective cloud storage service [A].Proceedings of 12th International Conference on Advanced Communication Technology:ICT for Green Growth and Sustainable Development,ICACT 2010 [C].Seoul,Korea: Institute of Electrical and Electronics Engineers Inc,2010.99-102.
[11] 孙大为,常桂然,李凤云,等.一种基于免疫克隆的偏好多维QoS云资源调度优化算法[J].电子学报,2011,39(8):1824-1831. Sun Da-wei,Chang Gui-ran,Li Feng-Yun,et al.Optimizing multi-dimensional QoS cloud resource scheduling by immune clonal with preference[J].Acta Electronica Sinica,2011,39(8):1824-1831.(in Chinese)
[12] 吴吉义,傅建庆,平玲娣,等.一种对等结构的云存储系统研究[J].电子学报,2011,39(5):1100-1107. Wu Ji-yi,Fu Jian-Qing,Ping Ling-di,et al.Study on the P2P cloud storage system[J].Acta Electronica Sinica,2011,39(5):1100-1107.(in Chinese)
[13] 范玉梅,许尔,周汉良.数学规划及其应用[M].北京: 冶金工业出版社,2004.70-80.
[14] 李建敦,彭俊杰,张 武.云存储中一种基于布局的虚拟磁盘节能调度方法[J].电子学报, 2012,40(11):2247-2254. Li Jian-dun,Peng Jun-jie,Zhang Wu.A layout-based energy-aware approach for virtual disk scheduling in cloud storage[J].Acta Electronica Sinica,2012,40(11):2247-2254.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61070182,No.61170209,No.61272528,No.61202432)
{{custom_fund}}