基于低秩分解的联合动态稀疏表示多观测样本分类算法

胡正平, 高红霄, 赵淑欢

电子学报 ›› 2015, Vol. 43 ›› Issue (3) : 440-446.

PDF(1851 KB)
PDF(1851 KB)
电子学报 ›› 2015, Vol. 43 ›› Issue (3) : 440-446. DOI: 10.3969/j.issn.0372-2112.2015.03.004
学术论文

基于低秩分解的联合动态稀疏表示多观测样本分类算法

  • 胡正平, 高红霄, 赵淑欢
作者信息 +

Multiple Observation Sets Classification Algorithm Based on Joint Dynamic Sparse Representation of Low-Rank Decomposition

  • HU Zheng-ping, GAO Hong-xiao, ZHAO Shu-huan
Author information +
文章历史 +

摘要

通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图像变换域,使得变换图像可以分解成一个低秩矩阵和一个相关的稀疏误差矩阵;然后对低秩矩阵和稀疏误差矩阵分别进行联合动态稀疏表示,以便充分利用类级的相关性和原子级的差异性,即使多观测样本的稀疏表示向量在类级别上分享相同的稀疏模型,而在原子级上采用不同的稀疏模型;最后利用总的稀疏重建误差进行类别判决.在CMU-PIE人脸数据库、ETH-80物体识别数据库、USPS手写体数字数据库和UMIST人脸数据库上进行对比实验,实验结果表明本方法的优越性.

Abstract

Multiple unconstrained observations of the same object can be easily accessed by the Internet, with regard to overcoming the identification-difficult of the unconstrained samples.Moreover, to exploit the information of multiple observation sets to improve the classification performance, a multiple observation sets classification algorithm based on joint dynamic spare representation of low-rank decomposition is presented.First of all, we need find the best set of image transform domain, which decomposes the data matrix into a low-rank matrix and an associated sparse error matrix.Secondly, the low-rank matrix and sparse error matrix is represented by joint dynamic sparsity respectively, in order to make full use of the correlation of the class-level and the differences of the atom-level, i.e, the sparse representation vectors for the multiple observations can share the same class-level sparsity pattern while their atom-level sparsity patterns may be distinct.Finally, we compare the classification results with the total sparse reconstruction errors.Three comparative experiments are conducted on CMU-PIE face dataset, ETH-80 object recognition dataset, USPS handwritten digit dataset, and UMIST face dataset, and the results demonstrate the superiority of the proposed algorithm.

关键词

模式识别 / 多观测样本分类 / 低秩矩阵恢复 / 联合动态稀疏表示

Key words

pattern recognition / multiple observation sets classification / low-rank matrix recovery / joint dynamic sparse representation

引用本文

导出引用
胡正平, 高红霄, 赵淑欢. 基于低秩分解的联合动态稀疏表示多观测样本分类算法[J]. 电子学报, 2015, 43(3): 440-446. https://doi.org/10.3969/j.issn.0372-2112.2015.03.004
HU Zheng-ping, GAO Hong-xiao, ZHAO Shu-huan. Multiple Observation Sets Classification Algorithm Based on Joint Dynamic Sparse Representation of Low-Rank Decomposition[J]. Acta Electronica Sinica, 2015, 43(3): 440-446. https://doi.org/10.3969/j.issn.0372-2112.2015.03.004
中图分类号: TP391.41   

参考文献

[1] Dong Xu, Yi Huang, Zinan Zeng, Xinxing Xu.Human gait recognition using patch distribution feature and locality-constrained group sparse representation[J].IEEE Transactions on Image Processing, 2012, 21(1):316-326.
[2] Zhao Nan, Xu Xin, Yang Yi.Sparse representations for speech enhancement[J].Chinese Journal of Electronics, 2011, 20(2):268-272.
[3] Zhu Hao, Giannakis Georgios B.Sparseovercomplete representations for efficient identification of power line outages[J].IEEE Transactions on Power Systems, 2012, 27(4):2215-2224.
[4] Wright John, Yang Allen Y, Ganesh Arvind, Ma Yi.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.
[5] Zhang Lihe, Zhang Kunyu.Weighted discriminative sparse coding for image classification[J].Chinese Journal of Electronics, 2014, 23(1):104-108.
[6] Huang Ke, Aviyente Selin.Sparse representations for signal classification[A].20th Annual Conference on Neural Information Processing Systems[C].Vancouver BC:NIPS, 2007.609-616.
[7] Elad Michael, Aharon Michal.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing, 2006, 15(12):3736-3745.
[8] Ramirez Ignacio, Sprechmann Pablo, Sapiro Guillermo.Classification and clustering via dictionary learning with structured incoherence and shared features[A].Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C].San Francisco:IEEE, 2010.3501-3508.
[9] Chia-Po Wei, Yu-Wei Chao, Yi-Ren Yeh, Yu-Chiang Frank Wang.Locality-sensitive dictionary learning for sparse representation based classification[J].Pattern Recognition, 2013, 46(5):1277-1287.
[10] He Ran, Zheng Wei-shi, Hu Bao-Gang, Kong Xiang-Wei.Nonnegative sparse coding for discriminative semi-supervised learning[A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Colorado Springs:IEEE, 2011.2849-2856.
[11] Chao Yu-Wei, Yeh Yi-Ren, Chen Yu-Wen, Lee Yuh-Jye, Wang Yu-Chiang Frank.Locality-constrained group sparse representation for robust face recognition[A].IEEE International Conference on Image Processing[C].Brussels:IEEE, 2011.761-764.
[12] Yuan Xiaotong, Yan Shuicheng.Visual classification with multi-task joint sparse representation[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].San Francisco:IEEE, 2010.3493-3500.
[13] Zhang Haichao, Nasrabadi Nasser M , Zhang Yanning, Huang Thomas S.Multi-observation visual recognition via joint dynamic sparse representation[A].IEEE International Conference on Computer Vision[C].Barcelona:IEEE, 2011.595-602.
[14] Zhang Haichao, Nasrabadi Nasser M , Zhang Yanning, Huang Thomas S.Joint dynamic sparse representation for multi-view face recognition[J].Pattern Recognition, 2012, 45(4):1290-1298.
[15] Chen Chih-Fan, Wei Chia-Po, Wang Yu-Chiang Frank.Low-rank matrix recovery with structural incoherence for robust face recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Providence:IEEE, 2012.2618-2625.
[16] Peng Yigang, Ganesh Arvind, Wright John, Xu Wenli, Ma Yi.RASL:Robust alignment by sparse and low-rank decomposition for linearly correlated Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2233-2246.
[17] Duarte Marco F, Cevher Volkan, Baraniuk Richard G.Model-based compressive sensing for signal ensembles[A].Annual Allerton Conference on Communication, Control, and Computing[C].Monticello:IEEE, 2009.244-250.

基金

国家自然科学基金 (No.61071199)

PDF(1851 KB)

Accesses

Citation

Detail

段落导航
相关文章

/