[1] Haykin S S.Neural Networks and Learning Machines[M].Upper Saddle River:Pearson Education, 2009.
[2] Izhikevich E M.Which model to use for cortical spiking neurons?[J].IEEE Transactions on Neural Networks, 2004, 15(5):1063-1070.
[3] Bohte S M.The evidence for neural information processing with precise spike-times:A survey[J].Natural Computing, 2004, 3(2):195-206.
[4] Ghosh-Dastidar S, Adeli H.Spiking neural networks[J].International Journal of Neural Systems, 2009, 19(4):295-308.
[5] Knudsen E I.Supervised learning in the brain[J].Journal of Neuroscience, 1994, 14(7):3985-3997.
[6] Kasiński A, Ponulak F.Comparison of supervised learning methods for spike time coding in spiking neural networks[J].International Journal of Applied Mathematics and Computer Science, 2006, 16(1):101-113.
[7] Quiroga R Q, Panzeri S.Principles of Neural Coding[M].Boca Raton, FL:CRC Press, 2013.
[8] 蔺想红, 张田文.分段线性脉冲神经元模型的动力学特性分析[J].电子学报, 2009, 37(6):1270-1276. Lin Xiang-hong, Zhang Tian-wen.Dynamical properties of piecewise linear spiking neuron model[J].Acta Electronica Sinica, 2009, 37(6):1270-1276.(in Chinese)
[9] Brette R, Rudolph M, Carnevale T, et al.Simulation of networks of spiking neurons:A review of tools and strategies[J].Journal of Computational Neuroscience, 2007, 23(3):349-398.
[10] Naud R, Gerhard F, Mensi S, et al.Improved similarity measures for small sets of spike trains[J].Neural Computation, 2011, 23(12):3016-3069.
[11] Wang J, Belatreche A, Maguire L, et al.Online versus offline learning for spiking neural networks:A review and new strategies[A].Proceedings of the 9th International Conference on Cybernetic Intelligent Systems[C].London, UK:IEEE, 2010.1-6.
[12] Kasabov N K.Neu Cube:A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data[J].Neural Networks, 2014, 52:62-76.
[13] Oniz Y, Kaynak O.Variable-structure-systems based approach for online learning of spiking neural networks and its experimental evaluation[J].Journal of the Franklin Institute, 2014, 351(6):3269-3285.
[14] Rumelhart D E, Hinton G E, Williams R J.Learning representations by back-propagating errors[J].Nature, 1986, 323(9):533-536.
[15] Bohte S M, Kok J N, La Poutré J A.Error-backpropagation in temporally encoded networks of spiking neurons[J].Neurocomputing, 2002, 48(1-4):17-37.
[16] Gerstner W, Kistler W M.Spiking Neuron Models:Single Neurons, Populations, Plasticity[M].Cambridge:Cambridge University Press, 2002.
[17] Xin J, Embrechts M J.Supervised learning with spiking neuron networks[A].Proceedings of the International Joint Conference on Neural Networks[C].Washington DC:IEEE, 2001.1772-1777.
[18] Schrauwen B, Van Campenhout J.Extending SpikeProp[A].Proceedings of the International Joint Conference on Neural Networks[C].Budapest, Hungary:IEEE, 2004.471-475.
[19] Mc Kennoch S, Liu D, Bushnell L G.Fast modifications of the SpikeProp algorithm[A].Proceedings of the International Joint Conference on Neural Networks[C].Vancouver, Canada:IEEE, 2006.3970-3977.
[20] Mc Kennoch S, Voegtlin T, Bushnell L.Spike-timing error backpropagation in theta neuron networks[J].Neural Computation, 2009, 21(1):9-45.
[21] Fang H, Luo J, Wang F.Fast learning in spiking neural networks by learning rate adaptation[J].Chinese Journal of Chemical Engineering, 2012, 20(6):1219-1224.
[22] Yang W, Yang J, Wu W.A modified spiking neuron that involves derivative of the state function at firing time[J].Neural Processing Letters, 2012, 36(2):135-144.
[23] Booij O, Nguyen T H.A gradient descent rule for spiking neurons emitting multiple spikes[J].Information Processing Letters, 2005, 95(6):552-558.
[24] Booij O.Temporalpattern Classification Using Spiking Neural Networks[D].Amsterdam:University of Amsterdam, 2004.
[25] 方慧娟, 王永骥.多脉冲发放的Spiking神经网络[J].应用科学学报, 2008, 26(6):638-644. Fang Hui-juan, Wang Yong-ji.Spiking neural networks with neurons firing multiple spikes[J].Journal of Applied Sciences, 2008, 26(6):638-644.(in Chinese)
[26] Ghosh-Dastidar S, Adeli H.A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection[J].Neural Networks, 2009, 22(10):1419-1431.
[27] Xu Y, Zeng X, Han L, et al.A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks[J].Neural Networks, 2013, 43:99-113.
[28] 巩祖正.脉冲神经网络的多脉冲定时误差反向传播算法研究[D].甘肃兰州:西北师范大学, 2013. Gong Zu-zheng.Multi-spike Timing Error Back Propagation Algorithm in Spiking Neural Networks[D].Lanzhou, Gansu:Northwest Normal University, 2013.(in Chinese)
[29] Tiňo P, Mills A J S.Learning beyond finite memory in recurrent networks of spiking neurons[J].Neural Computation, 2006, 18(3):591-613.
[30] Gütig R, Sompolinsky H.The Tempotron:A neuron that learns spike timing-based decisions[J].Nature Neuroscience, 2006, 9(3):420-428.
[31] Florian R V.The Chronotron:A neuron that learns to fire temporally precise spike patterns[J].PLoS One, 2012, 7(8):e40233.
[32] Victor J D, Purpura K P.Metric-space analysis of spike trains:Theory, algorithms and application[J].Network:Computation in Neural Systems, 1997, 8(2):127-164.
[33] Xu Y, Zeng X, Zhong S.A new supervised learning algorithm for spiking neurons[J].Neural Computation, 2013, 25(6):1472-1511.
[34] Le Mouel C, Harris K D, Yger P.Supervised learning with decision margins in pools of spiking neurons[J].Journal of Computational Neuroscience, 2014, 37(2):333-344
[35] Hebb D O.The Organization of Behavior:A Neuropsychological Theory[M].New York:Wiley, 1949.
[36] Caporale N, Dan Y.Spike timing-dependent plasticity:A Hebbian learning rule[J].Annual Review of Neuroscience, 2008, 31(1):25-46.
[37] Ruf B, Schmitt M.Learning temporally encoded patterns in networks of spiking neurons[J].Neural Processing Letters, 1997, 5(1):9-18.
[38] Legenstein R, Naeger C, Maass W.What can a neuron learn with spike-timing-dependent plasticity?[J].Neural Computation, 2005, 17(11):2337-2382.
[39] Ponulak F, Kasinski A.Supervised learning in spiking neural networks with ReSuMe:Sequence learning, classification, and spike shifting[J].Neural Computation, 2010, 22(2):467-510.
[40] Ponulak F.Analysis of the ReSuMe learning process for spiking neural networks[J].International Journal of Applied Mathematics and Computer Science, 2008, 18(2):117-127.
[41] Glackin C, Maguire L, Mc Daid L, et al.Receptive field optimisation and supervision of a fuzzy spiking neural network[J].Neural Networks, 2011, 24(3):247-256.
[42] Hu J, Tang H, Tan K C, et al.A spike-timing-based integrated model for pattern recognition[J].Neural Computation, 2013, 25(2):450-472.
[43] Sporea I, Grüning A.Supervised learning in multilayer spiking neural networks[J].Neural Computation, 2013, 25(2):473-509.
[44] Wade J J, Mc Daid L J, Santos J A, et al.SWAT:A spiking neural network training algorithm for classification problems[J].IEEE Transactions on Neural Networks, 2010, 21(11):1817-1830.
[45] Gardner B, Grüning A.Learning temporally precise spiking patterns through reward modulated spike-timing-dependent plasticity[A].Proceedings of the 23rd International Conference on Artificial Neural Networks[C].Sofia, Bulgaria:Springer Berlin Heidelberg, 2013.256-263.
[46] Paugam-Moisy H, Martinez R, Bengio S.Delay learning and polychronization for reservoir computing[J].Neurocomputing, 2008, 71(7):1143-1158.
[47] Pfister J P, Toyoizumi T, Barber D, et al.Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning[J].Neural Computation, 2006, 18(6):1318-1348.
[48] Brea J, Senn W, Pfister J P.Matching recall and storage in sequence learning with spiking neural networks[J].The Journal of Neuroscience, 2013, 33(23):9565-9575.
[49] Carnell A, Richardson D.Linear algebra for times series of spikes[A].Proceedings of the 13th European Symposium on Artificial Neural Networks[C].Evere, Belgium:d-side, 2005.363-368.
[50] Mohemmed A, Schliebs S.SPAN:Spike pattern association neuron for learning spatio-temporal spike patterns[J].International Journal of Neural Systems, 2012, 22(4):1250012.
[51] Mohemmed A, Schliebs S, Matsuda S, Kasabov N.Training spiking neural networks to associate spatio-temporal input-output spike patterns[J].Neurocomputing, 2013, 107:3-10.
[52] Yu Q, Tang H, Tan K C, Li H.Precise-spike-driven synaptic plasticity:Learning hetero-association of spatiotemporal spike patterns[J].PLoS One, 2013, 8(11):e78318.
[53] Yu Q, Tang H, Tan K C, Yu H.A brain-inspired spiking neural network model with temporal encoding and learning[J].Neurocomputing, 2014, 138:3-13. [LL]
[54] Mohemmed A, Kasabov N.Incremental learning algorithm for spatio-temporal spike pattern classification[A].Proceedings of the International Joint Conference on Neural Networks[C].Brisbane, QLD:IEEE, 2012.1-6.
[55] Li C, Lu J, Wu C, et al.Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity[J].Neuron, 2004, 41(2):257-268.
[56] Wu W, Srivastava A.An information-geometric framework for statistical inferences in the neural spike train space[J].Journal of Computational Neuroscience, 2011, 31(3):725-748.
[57] Park I M, Seth S, Paiva A, et al.Kernel methods on spike train space for neuroscience:A tutorial[J].IEEE Signal Processing Magazine, 2013, 30(4):149-160.
[58] Selvaratnam K, Kuroe Y, Mori T.Learning methods of recurrent spiking neural networks-Transient and oscillatory spike trains[J].Transactions of the Institute of Systems, Control and Information Engineers, 2000, 44(3):95-104.
[59] Kuroe Y, Ueyama T.Learning methods of recurrent spiking neural networks based on adjoint equations approach[A].Proceedings of the International Joint Conference on Neural Networks[C].Barcelona, Spain:IEEE, 2010.1-8.
[60] Rostro-Gonzalez H, Cessac B, Viéville T.Parameter estimation in spiking neural networks:A reverse-engineering approach[J].Journal of Neural Engineering, 2012, 9(2):026024. |