一种多子焦元信度赋值非零情况下的DSmT近似融合推理方法

郭强, 何友, 关欣, 盖明久

电子学报 ›› 2015, Vol. 43 ›› Issue (10) : 2069-2075.

PDF(5064 KB)
PDF(5064 KB)
电子学报 ›› 2015, Vol. 43 ›› Issue (10) : 2069-2075. DOI: 10.3969/j.issn.0372-2112.2015.10.028
学术论文

一种多子焦元信度赋值非零情况下的DSmT近似融合推理方法

  • 郭强1, 何友1, 关欣2, 盖明久3
作者信息 +

An DSmT Approximate Reasoning Method on the Condition of Non-zero Multiple Focal Elements

  • GUO Qiang1, HE You1, GUAN Xin2, GAI Ming-jiu3
Author information +
文章历史 +

摘要

为了能够减小基于Dezert-Smarandache理论(DSmT)框架的第5条比例冲突分配规则(PCR5)处理含有交多子焦元证据融合问题的计算复杂度并保持较高的精度,本文提出一种多子焦元信度赋值非零情况下的DSmT近似融合推理方法.该方法避免了现有的基于Shafer模型的DSmT近似融合推理方法由于需要预先解耦带来的信息损失,并且不仅适用于Shafer模型也适用于混合Dezert-Smarandache(DSm)模型下部分交多子焦元非冲突且信度赋值非零的情况.仿真实验表明,在不同的情况下,本文方法相比现有的方法,与DSmT+PCR5融合推理方法融合结果相似度更高且计算效率显著提高.

Abstract

For reducing the computation complexity of the Proportional Conflict Redistribution No.5 (PCR5) with the framework of Dezert-Smarandache Theory (DSmT) for evidence fusion problems of mulitple focal elements and remaining high accuracy, a Dezert-Smarandache Theory (DSmT) approximate reasoning method on the condition of non-zero mulitple focal elements is proposed.The method avoids the informaiton loss caused by decoupling of the existed DSmT approximate reasoning method.The information fusion problems of non-zero mulitple focal elements based on not only the Shafer model but the hybrid-Dezert-Smarandache (DSm) model can be effectively processed by the proposed method.Finally, simulation results show that in different conditions, the proposed method can get more similar results with DSmT+PCR5 method and need less computation complexity compared to the existed method.

关键词

证据理论 / 近似推理 / 信息融合 / 混合DSm模型 / Dezert-Smarandache理论

Key words

evidence theory / approximate reasoning / information fusion / hybrid-DSm(Dezert-Smarandache) model / dezert-smarandache theory

引用本文

导出引用
郭强, 何友, 关欣, 盖明久. 一种多子焦元信度赋值非零情况下的DSmT近似融合推理方法[J]. 电子学报, 2015, 43(10): 2069-2075. https://doi.org/10.3969/j.issn.0372-2112.2015.10.028
GUO Qiang, HE You, GUAN Xin, GAI Ming-jiu. An DSmT Approximate Reasoning Method on the Condition of Non-zero Multiple Focal Elements[J]. Acta Electronica Sinica, 2015, 43(10): 2069-2075. https://doi.org/10.3969/j.issn.0372-2112.2015.10.028
中图分类号: TP391   

参考文献

[1] 康兵义,李娅,邓勇,等.基于区间数的基本概率指派生成方法及应用[J].电子学报,2012,40(6):1092-1096. Kang Bing-yi,Li Ya,Deng Yong,et al.Determination of basic probability assignment based on interval numbers and its application[J].Acta Electronica Sinica,2012,40(6):1092-1096.(in Chinese)
[2] 杨威,付耀文,潘晓刚,等.弱目标检测前跟踪技术研究综述[J].电子学报,2014,42(9):1786-1793. Yang Wei,Fu Yao-wen,Pan Xiao-gang,et al.Track-before-detect technique for dim targets:an overview[J].Acta Electronica Sinica,2014,42(9):1786-1793.(in Chinese)
[3] 杨威,付耀文,龙建乾,等.基于有限集统计学理论的目标跟踪技术研究综述[J].电子学报,2012,40(7):1440-1448. Yang Wei,Fu Yao-wen,Long Jian-qian,et al.The FISST-based target tracking technques:a survey[J].Acta Electronica Sinica,2012,40(7):1440-1448.(in Chinese)
[4] 徐晓斌,张光卫,孙其博,等.一种误差可控传输均衡的WSN数据融合算法[J].电子学报,2014,42(6):1205-1209. Xu Xiao-bin,Zhang Guang-wei,Sun Qi-bo,et al.Precision configurable data algorithm in WSNs[J].Acta Electronica Sinica,2014,42(6):1205-1209.(in Chinese)
[5] 高仕博,程咏梅,肖利平,等.面向目标检测的稀疏表示方法研究进展[J].电子学报,2015,43(2):320-332. Gao Shi-bo,Cheng Yong-mei,Xiao Li-ping,et al.Recent advances of sparse representation for object detection[J].Acta Electronica Sinica,2015,43(2):320-332.(in Chinese)
[6] Lu X,Mo H,Deng Y.An evidential opinion dynamics model based on heterogeneous social influential power[J].Chaos,Solitons & Fractals,2015,73:98-107.
[7] 韩德强,韩崇昭,邓勇,等.基于证据方差的加权证据组合[J].电子学报,2011,39(3A):153-157. Han De-qiang,Han Chong-zhao,Deng Yong,et al.Weighted combination of conflicting evidence based on evidence variance[J].Acta Electronica Sinica,2011,39(3A):153-157.(in Chinese)
[8] 陈雁飞,夏学知,胡丹佳,等.基于试探折扣修正的证据组合方法[J].电子学报,2014,42(4):756-765. Chen Yan-fei,Xia Xue-zhi,Hu Dan-gui,et al.Evidence combination based on tentative discount of evidences[J].Acta Electronica Sinica,2014,42(4):756-765.
[9] Smarandache F,Dezert J.Advances and Applications of DSmT for Information Fusion (Vol.1-3)[M].Rehoboth,USA:American Research Press,2004/2006/2009.
[10] Liu Z,Dezert J,Pan Q,et al.Combination of sources of evidence with different discounting factors based on a new dissimilarity measure[J].Decision Support Systems,2011,52(1):133-141.
[11] Li X,Huang X,Dezert J,et al.A successful application of DSmT in sonar grid map building and comparison with DST-based approach[J].International Journal of Innovative Computing,Information and Control,2007,3(3):539-551.
[12] Li X,Dezert J,Smarandache F,et al.Combination of qualitative information based on 2-Tuple modelings in DSmT[J].Journal of Computer Science and Technology,2009,24(4):786-798.
[13] Li X,Dai X,Dezert J,et al.Fusion of imprecise qualitative information[J].Applied Intelligence,2010,33(3):340-351.
[14] Liu Z,Pan Q,Mercier G,et al.A new incomplete pattern classification method based on evidential reasoning[J].IEEE Transactions on Cybernetics,2015,45(4):635-646.
[15] 辛玉林,邹江威,徐世友,等.DSmT理论在综合敌我识别中的应用[J].系统工程与电子技术,2010,11(32):2385-2388. Xin Yu-lin,Zou Jiang-wei,Xu Shi-you,et al.Application of DSmT in integrated identification of friend-or-foe[J].Systems Engineering and Electronics,2010,11(32):2385-2388.(in Chinese)
[16] 李新德,黄心汉,戴先中,等.基于DSmT融合机的移动机器人环境感知研究[J].华中科技大学学报,2009,37(12):64-67. Li Xin-de,Huang Xin-han,Dai Xian-zhong,et al.Study on environment perception of mobile robots using DSmT-based fusion machine[J].Journal of Huazhong University of Science and Technology,2009,37(12):64-67.(in Chinese)
[17] 李新德,黄心汉,戴先中,等.模糊扩展DSmT在移动机器人环境感知中的应用[J].华中科技大学学报,2008,36(S1):113-114. Li X,Huang X,Dai X,et al.Sensing environment with mobile robot by appling fuzzy-extended DSmT[J].Journal of Huazhong University of Science an Technology,2008,36(S1):113-114.(in Chinese)
[18] Djiknavorian P,Grenier D.Reducing DSmT hybrid rule complexity through optimization of the calculation algorithm[A].Advances and Applications of DSmT for Information Fusion (Vol.2)[M].Rehoboth,USA:American Research Press,2006.365-429.
[19] Martin A.Implementing general belief function framework with a practical codification for low complexity[A].Advances and Applications of DSmT for Information Fusion (Vol.3)[M].Rehoboth,USA:American Research Press,2009.217-273.
[20] N Abbas,Y Chibani,H Nemmour.Handwritten digit recognition based on a DSmT-SVM parallel combination[A].The 13th International Conference on Frontiers in Handwriting Recognition (ICFHR)[C].Bari,Italy:IEEE Press,2012.241-246.
[21] Abbas N,Chibani Y,Belhadi Z,et al.A DSmT based combination scheme for multi-class classification[A].The 16th International Conference on Information FUSION (ICIF)[C].Istanbul,Turkey:IEEE Press,2013.1950-1957.
[22] Li X,Dezert J,Smarandache F,et al.Evidence supporting measure of similarity for reducing the complexity in information fusion[J].Information Sciences,2011,181(11):1818-1835.
[23] 李新德,Dezert J,黄心汉,et al.一种快速分层递阶DSmT近似推理融合方法(A)[J].电子学报,2010,38(11):2566-2572. Li Xin-de,Dezert Jean,Huang Xinhan,et al.A fast approximate reasoning method in hierarchical DSmT(A)[J].Acta Electronica Sinica,2010,38(11):2566-2572.(in Chinese)
[24] 李新德,杨伟东,吴雪建,等.一种快速分层递阶DSmT近似推理融合方法(B)[J].电子学报,2011,39(3A):31-36. Li Xin-de,Yang Wei-dong,Wu Xue-jian,et al.A fast approximate reasoning method in hierarchical DSmT(B)[J].Acta Electronica Sinica,2011,39(3A):31-36.(in Chinese)
[25] 李新德,杨伟东,Dezert J.一种快速分层递阶DSmT近似推理融合方法(C)[J].华中科技大学学报,2011,39(S2):150-156. Li Xin-de,Yang Wei-dong,Dezert J.A fast approximate reasoning method in hierarchical DSmT(C)[J].Journal of Huazhong University of Science and Technology,2011,39(S2):150-156.(in Chinese)

基金

国家自然科学基金 (No.61102166,No.61471379); 教育部新世纪优秀人才支持计划 (No.NCET-11-0872)

PDF(5064 KB)

1184

Accesses

0

Citation

Detail

段落导航
相关文章

/