环Z4+uZ4线性码关于李重量的一类MacWilliams恒等式

李平, 李珊珊, 唐永生

电子学报 ›› 2015, Vol. 43 ›› Issue (12) : 2461-2465.

PDF(281 KB)
PDF(281 KB)
电子学报 ›› 2015, Vol. 43 ›› Issue (12) : 2461-2465. DOI: 10.3969/j.issn.0372-2112.2015.12.017
学术论文

环Z4+uZ4线性码关于李重量的一类MacWilliams恒等式

  • 李平1, 李珊珊1, 唐永生2
作者信息 +

A Type of MacWilliams Identity for Linear Codes over Z4+uZ4 on Lee Weight

  • LI Ping1, LI Shan-shan1, TANG Yong-sheng2
Author information +
文章历史 +

摘要

MacWilliams恒等式是研究线性码及其对偶码的码字重量分布的一个非常有用的工具,而码字的重量分布的研究是编码研究中一个非常重要的研究方向.本文定义了环Z4+uZ4上长度为n的线性码的m-层李重量计数器,给出了环Z4+uZ4上长度为n的线性码关于李重量的一类MacWilliams恒等式.证明了该等式是生成矩阵在环Z4+uZ4上的环GR(4,m)+uGR(4,m)上线性码关于李重量的MacWilliams恒等式.进一步,利用Krawtchouk多项式,获得了环Z4+uZ4上长度为n的线性码的等价形式MacWilliams恒等式.

Abstract

MacWilliams identity is an useful tool in studying weight distributions of linear codes and their duals.Weight distribution is also an important topic of coding theory.This paper defines the m-ply Lee weight enumerators for linear codes of length n over Z4+u Z4.We give a type of Mac-Williams identity for linear codes of length n over Z4+u Z4 on Lee weight.We prove that this identity is the MacWilliams identity on Lee weight for linear codes over GR(4,m)+uGR(4,m)having generator matrix over Z4+u Z4.Furthermore,by means of Krawtchouk polynomials the equivalent form of the type of MacWilliams identity for linear codes of length n over Z4+u Z4 is obtained.

关键词

线性码 / 李重量 / m-层重量计数器 / MacWilliams恒等式

Key words

linear codes / Lee weight / m-ply weight enumerator / MacWilliams identities

引用本文

导出引用
李平, 李珊珊, 唐永生. 环Z4+uZ4线性码关于李重量的一类MacWilliams恒等式[J]. 电子学报, 2015, 43(12): 2461-2465. https://doi.org/10.3969/j.issn.0372-2112.2015.12.017
LI Ping, LI Shan-shan, TANG Yong-sheng. A Type of MacWilliams Identity for Linear Codes over Z4+uZ4 on Lee Weight[J]. Acta Electronica Sinica, 2015, 43(12): 2461-2465. https://doi.org/10.3969/j.issn.0372-2112.2015.12.017
中图分类号: TN911.22   

参考文献

[1] Hammons A R,Kumar Jr P V,Calderbank A R,Solance N J A,Solé P.The Z4 -linearity of Kerdock,Preparata,Goethals and related codes[J].IEEE Transactions on Information Theory,1994,40(2):301-319.
[2] Bachoc C.Application of coding theory to the construvtion of modular lattices[J].Journal of Combinatorial Theory,Series A,1997,78(1):92-119.
[3] 施敏加,杨善林,朱士信.环 F2 +u F2 上长度为2s的循环码的距离[J].电子学报,2011,39(1):29-34. Shi Min-jia,Yang Shan-lin,Zhu Shi-xin.On minimum distances of cyclic codes of length 2sover F2 +u F2 [J].Acta Electronica Sinica,2011,39(1):29-34.(in Chinese)
[4] Shi M J,Yang S L,Zhu S X.Good p-ary quasic-cyclic codes from cyclic codes over Fp+vFp[J].Journal of Systems Science and Complexity,2012,25(2):375-384.
[5] Dinh H Q,Nguyen H D T.On some classes of constacyclic codes over polynomial residue rings[J].Advances in Mathematics of Communications,2012,6(2):175-191.
[6] Zhu S X,Wang L Q.A class of constacyclic codes over Fp +v Fp and its gray image[J].Discrete Mathematics,2011,311(23-24):2677-2682.
[7] Kai X S,Zhu S X,Wang L Q.A family of constacyclic codes over F2 +u F2 +v F2 +uv F2 [J].Journal of Systems Science and Complexity,2012,25(5):1032-1040.
[8] Yildiz B,Karadeniz S.Linear codes over Z4 +u Z4 :MacWilliams identities,projections,and formally self-dual codes[J].Finite Field and Their Applications,2014,27(1):24-40.
[9] MacWilliams F J,Sloane N J A.The Theory of Error-Correcting Codes[M].Amsterdam,the Netherlands:North-Holland,1977.125-154.
[10] Wei V K.Generalized Hamming weights for linear codes[J].IEEE Transactions on Information Theory,1991,37(5):1412-1418.
[11] Shiromoto K.The weight Enumerator of linear codes over GF(qm) having generator matrix over GF(q)[J].Design Codes and Cryptography,1999,16(1):87-92.
[12] Shiromoto K.A basic exact sequence for the Lee and Euclidean weights of linear codes over Zl [J].Linear Algebra and Its Applications,1999,295(1):191-200.
[13] Cui J,Pei J Y.Generalized MacWilliams identities for Z4 -linear codes[J].IEEE Transactions on Information Theory,2004,50(12):3302-3305.
[14] Dougherty S,Gupta M,Shiromoto K.Generalized weights for codes over finite rings[J].Australasian Journal of Combinatorics,2005,31(1):231-241.
[15] 唐永生.有限环上循环码的中国积和线性码的MacWilliams恒等式的研究[D].合肥:合肥工业大学硕士学位论文,2009.
[16] Zhu S X, Tang Y S.A MacWilliams type identity on Lee weight for linear codes over F2 +u F2 [J].Journal of Systems Science and Complexity,2012,25(1):186-194.
[17] Shiromoto K.Singleton bounds for codes over finite rings[J].Journal of Algebraic Combinatorics,2000,12(1):95-99.

基金

国家自然科学基金 (No.61370089); 安徽省自然科学基金 (No.1408085QF116); 安徽省高校省级科学研究项目 (No.KJ2013B221); 合肥工业大学博士专项科研资助基金 (No.JZ2014HGBZ0029); 中央高校基本科研业务费专项资金资助项目 (No.J2014HGXJ0073); 东南大学移动通信国家重点实验室开放研究基金资助课题 (2014D04); 2014年安徽省高校优秀青年人才支撑计划项目 (No.皖教秘人[2014]181); 合肥师范学院校级科研机构基金 (No.2015JG09)

PDF(281 KB)

1629

Accesses

0

Citation

Detail

段落导航
相关文章

/