
多层金属电源线地线网络拓扑结构的IR-drop分析方法
A Technique for IR-Drop Analysis of the Multilayered Power/Ground Networks
提出了一种电源/地线(P/G)网络压降(IR-drop)静态分析方法.该方法探索了多层金属立体P/G网络结构,通过输入各金属层的坐标和通孔(Via)的工艺规则,分析不同多层金属P/G网络的拓扑结构对IR-drop的影响.实验结果表明,文中方法的压降评估结果与SPICE仿真结果相比有着高度的一致性,平均误差小于0.4%,且算法时间复杂度与通孔数目成线性关系.并且指出中间层金属的拓扑结构对IR-drop的分布和大小有重要影响.
This paper presents a method for DC analysis of IR-drop in power/ground (P/G) networks.The proposed method explores three-dimensional structure of multi-layer P/G grids.By inputting the coordinates of each metal layer and the process rules of vias,the proposed method analyzes the impact of different multi-layers P/G grids on IR-drop.Experimental results demonstrate that the method has high consistency with SPICE simulation results.The relative error is less than 0.4% and the time complexity has the linear relation to the number of vias.Moreover,the topology of inter-layers has an important relation to the value and distributions of IR-drop.
电源/地线网络 / 多层 / 压降 / 通孔 {{custom_keyword}} /
power/ground networks / multi-layers / IR-drop / via {{custom_keyword}} /
[1] S Kirolos,Y Massoud,Y Ismail.Power-supply-variation-aware timing analysis of synchronous systems[A].IEEE International Symposium on Circuits and Systems[C].Piscataway:IEEE Press,2008.2418-2421.
[2] A H Ajami,et al.Analysis of IR-drop scaling with implications for deep submicron P/G network designs[A].The Proceedings-4th International Symposium on Quality Electronic Design[C].Piscataway:IEEE Press,2003.35-40.
[3] S Cauley,V Balakrishnan,C K Koh.A parallel direct solver for the simulation of large-scale power/ground networks[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29(4):636-641.
[4] J N Kozhaya,S R Nassif,F N Najm.A multigrid-like technique for power grid analysis[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2002,21(10):1148-1160.
[5] T H Chen,C C P Chen.Efficient large-scale power grid analysis based on preconditioned krylov-subspace iterative methods[A].2001 Proceedings of Design Automation Conference[C].Piscataway:IEEE Press,2001.559-562.
[6] Y Zhong,M Wong.Efficient second-order iterative methods for IR Drop analysis in power grid[A].Asia and South Pacific Design Automation Conference[C].Piscataway:IEEE Press,2007.768-773.
[7] R Achar,et al.Parallel and scalable transient simulator for power grids via waveform relaxation (PTS-PWR)[J].IEEE Transactions on Very Large Scale Integration Systems,2011,19(2):319-332.
[8] P Du,et al.Power grid sizing via convex programming[A].IEEE International Conference on ASIC[C].Piscataway:IEEE Press,2011.337-340.
[9] Z Y Zeng,P Li.Locality-driven parallel power grid optimiza- tion[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2009,28(8):1190-1200.
[10] C J Lee,et al.Hierarchical power network synthesis for multiple power domain designs[A].2012 13th International Symposium on Quality Electronic Design[C].Piscataway:IEEE Press,2012.477-482.
[11] R Jakushokas,E G Friedman.Multi-layer interdigitated power distribution networks[J].IEEE Transactions on Very Large Scale Integration Systems,2011,19(5):774-786.
[12] J M S Silva,J R Phillips,L M Silveira.Efficient simulation of power grids[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29(10):1523-1532.
国家自然科学基金 (No.61271149)
/
〈 |
|
〉 |