[1] 田大中, 高宪文, 李琨.基于EMD与LS-SVM的网络控制系统的时延预测方法[J].电子学报, 2014, 42(5):868-874. TIAN Da-zhong, GAO Xian-wen, LI Kun.Time-delay prediction method of networked control system based on EMD and LS-SVM[J].Acta Electronica Sinica, 2014, 42(5):868-874.(in Chinese)
[2] LIAO X F, WONG K W.Robust stability of interval bidirectional associative memory neural networks with time delays[J].IEEE Transactions on Systems, Man and Cybernetics-B, 2004, 34(2):1141-1154.
[3] 王占山, 张化光, 余文, 张庆灵.基于LMI的时变时滞Cohen-Grossberg神经网络鲁棒稳定性[J].电子学报, 2008, 36(11):2220-2223. WANG Zhan-shan, ZHANG Hua-guang, YU Wen, ZHANG Qing-ling.An LMI approach to robust stability analysis of Cohen-Grossberg neural networks with time varying delay[J].Acta Electronica Sinica, 2008, 36(11):2220-2223.(in Chinese)
[4] HE Y, WU M, SHE J H, et al.Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J].Systems & Control Letters, 2004, 51(1):57-65.
[5] WU M, HE Y, SHE J H, et al.Delay-dependent criteria for robust stability of time-varying delay systems[J].Automatica, 2004, 40(8):1435-1439.
[6] HE Y, WANG Q Q, LIN C, et al.Delay-range-dependent stability for systems with time varying delay[J].Automatica, 2007, 43(2):371-376.
[7] HE Y, WANG Q Q, XIE L, et al.Further improvement of free-weighting matrices technique for systems with time-varying delay[J].IEEE Transactions on Automatic Control, 2007, 52(2):293-299.
[8] 刘金良.一类网络环境下的离散线性系统的可靠性滤波器设计研究[J].电子学报, 2013, 40(12):2557-2561. LIU Jin-liang.Network-based reliable filter design for a class of discrete linear systems[J].Acta Electronica Sinica, 2013, 40(12):2557-2561.(in Chinese)
[9] Zhang X M, Han Q L.A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays[J].International of Journal of Robust and Nonlinear Control, 2009, 19(7):1922-1930.
[10] ZHU X L, YANG G H.New results of stability analysis for systems with time-varying delay[J].International of Journal of Robust and Nonlinear Control, 2010, 20(5):596-606.
[11] Park P G, Ko J W.Stability and robust stability for systems with a time-varying delay[J].Automatica, 2007, 43(10):1855-1858.
[12] ZENG H B, HE Y, WU M.Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays[J].IEEE Transactions on Neural Networks, 2011, 22(5):806-812.
[13] Pavlovi'c G, Jankovi'c S.Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay[J].Journal of Computational and Applied Mathematics, 2012, 236(7):1679-1690.
[14] HAN Q L.Absolute stability of time-delay systems with sector-bounded nonlinearity[J].Automatica, 2005, 41(12):2171-2176.
[15] SUN J, LIU G P, CHEN J, et al.Improved delay-range dependent stability criteria for linear systems with time varying delays[J].Automatica, 2010, 46(2):466-470.
[16] WU F, HU S.Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations[J].International Journal of Robust and Nonlinear Control, 2012, 22(7):763-777.
[17] Balasubramaniam P, Nagamani G.A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay[J].Neurocomputing, 2011, 74(10):1646-1653.
[18] WANG C, SHEN Y.Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time-varying delay[J].IET Control Theory and Applications, 2012, 6(7):875-883.
[19] ZHANG X M, HAN Q L.New Lyapunov-Krasovskii functional for global asymptotic stability of delayed neural networks[J].IEEE Transaction on Neural Networks, 2009, 20(3):533-539. |