
基于混合高斯模型和主成分分析的轨迹分析行为识别方法
Gaussian Mixture Models and Principal Component Analysis Based Human Trajectory Behavior Recognition
针对家庭辅助生活应用场景下的目标意图识别和异常行为判别问题,提出了一种基于目标轨迹的行为分析方法.首先,提出了关键点和关键区域的概念,将家庭环境划分为不同的关键点和关键区域,并以此来描述和区分不同轨迹;然后,提出了利用混合高斯模型的关键点及关键区域获取算法,将轨迹转化为关键点及关键区域表示,并以此为基础进行了行为意图的识别和部分异常轨迹的判断;最后,借助主成分分析的方法弥补混合高斯聚类在异常轨迹识别方面的缺陷,提高了识别准确率.实验表明,该方法能够有效的对行为意图和异常行为进行识别.
In order to solve the problems of human motion intention recognition and abnormal behavior detection in home environment, a trajectory analysis based algorithm is discussed in this paper.Firstly, the home environment is divided into different key points and areas, so that the motion trajectory can be described by them.Moreover, based on mixture Gaussian model, the problems of motion intention recognition and abnormal behavior detection are analyzed.Finally, the PCA algorithm is applied to improve the accuracy of abnormal behavior detection.The experimental results show the effectiveness and reliability of the above conclusions.
意图识别 / 异常行为检测 / 轨迹分析 / 混合高斯聚类 / 主成分分析 {{custom_keyword}} /
motion intention recognition / abnormal behavior detection / motion trajectory analysis / Gaussian mixture clustering / principal component analysis {{custom_keyword}} /
[1] 王传旭, 刘云, 厉万庆.基于时空特征点的非监督姿态建模和行为识别的算法研究[J].电子学报, 2011, 39(8):1751-1756. Wang Chuanxu, Liu Yun, Li Wanqing.Research of unsupervised posture modeling and action recognition based on spatial-temporal interesting points[J].Acta Electronica Sinica, 2011, 39 (8):1751-1756.(in Chinese)
[2] 蒋建国, 等.多摄像机视域内的目标活动分析[J].电子学报, 2014, 42 (2):306-311. Jiang Jianguo, et al.Activity analysis cross multi-Camera[J].Acta Electronica Sinica, 2014, 42 (2):306-311.(in Chinese)
[3] Lou J, Liu Q, Tan T, et al.Semantic interpretation of object activities in a surveillance system[A].The 16th International Conference on Pattern Recognition[C].USA:IEEE, 2002, 3.777-780.
[4] Buzan D, et al.Extraction and clustering of motion trajectories in video[A].The 17th International Conference on Pattern Recognition[C].USA:IEEE, 2004, 2.521-524.
[5] Hu W, Li X, Tian G, et al.An incremental DPMM-based method for trajectory clustering, modeling, and retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5):1051-1065.
[6] Restrepo J C, et al.Trajectory generation for a robotic in a robocup test scenery using Kalman filter and B-spline curves[A].XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)[C].USA:IEEE, 2012.110-115.
[7] Dyana A, et al.Combining features for shape and motion trajectory of video objects for efficient content based video retrieval[A].International Conference on Advances in Pattern Recognition[C].USA:IEEE, 2009.113-116.
[8] Kolesnikov A.Efficientonline algorithms for the polygonal approximation of trajectory data[A].The 2th IEEE International Conference on Mobile Data Management (MDM)[C].USA:IEEE, 2011, 1.49-57.
[9] Naftel A, Khalid S.Motion trajectory learning in the DFT-coefficient feature space[A].IEEE International Conference on Computer Vision Systems[C].USA:IEEE, 2006.47-47.
[10] Morris B T, Trivedi M M.A survey of vision-based trajectory learning and analysis for surveillance[J].IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8):1114-1127.
[11] Morris B, Trivedi M.Learning trajectory patterns by clustering:Experimental studies and comparative evaluation[A].IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE, 2009.312-319.
[12] Calderara S, Prati A, Cucchiara R.Mixtures of von mises distributions for people trajectory shape analysis[J].IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(4):457-471.
[13] Ratanamahatana C A, Keogh E.Three myths about dynamic time warping data mining[A].Proceedings of SIAM International Conference on Data Mining[C].USA:SIAM, 2005.506-510.
[14] Atev S, Miller G, Papanikolopoulos N P.Clustering of vehicle trajectories[J].IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):647-657.
[15] Piotto N, Conci N, De Natale F G B.Syntactic matching of trajectories for ambient intelligence applications[J].IEEE Transactions on Multimedia, 2009, 11(7):1266-1275.
[16] Choudry M U, Beach T A C, et al.A stochastic framework for movement strategy identification and analysis[J].IEEE Transactions on Human-Machine Systems, 2013, 43(3):314-327.
[17] Nascimento J C, Marques J S, Lemos J M.Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields[J].IEEE Transactions on Image Processing, 2013, 22(5):2066-2080.
[18] Kang J, Park S U, Chung M J.Online motion segmentation using spatially-constrained j-linkage in dynamic scene[A].IEEE International Conference on Robotics and Biomimetics[C].USA:IEEE, 2012.1854-1860.
[19] Saleemi I, Shafique K, Shah M.Probabilistic modeling of scene dynamics for applications in visual surveillance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8):1472-1485.
[20] Bennewitz M, Burgard W, Thrun S.Using EM to learn motion behaviors of persons with mobile robots[A].IEEE/RSJ International Conference on Intelligent Robots and Systems[C].USA:IEEE, 2002, 1.502-507.
[21] Bashir F I, Khokhar A A, Schonfeld D.Segmented trajectory based indexing and retrieval of video data[A].Proceedings of International Conference on Image Processing[C].USA:IEEE, 2003.623-626.
[22] 尹建芹, 田国会, 等.面向家庭服务的人体动作识别[J].四川大学学报(工程科学版), 2011, 43(4):101-107. Yin Jianqin, Tian Guohui, et al.Human action recognition ori-ented to family service[J].Journal of Sichuan University (Engineering Science Edition), 2011, 43(4):101-107.(in Chinese)
[23] Fraley C.Algorithms for model-based Gaussian hierarchical clustering[J].SIAM Journal on Scientific Computing, 1998, 20(1):270-281.
[24] Pachoud S, Maggio E, Cavallaro A.Grouping motion trajectories[A].IEEE International Conference on Acoustics, Speech and Signal Processing[C].USA:IEEE, 2009.1477-1480.
[25] 桂树, 郭立, 陆海先.基于 MUGG 的轨迹建模与异常检测[J].中国科学院研究生院学报, 2013, 30(2):244-250. Gui Shu, Guo Li, Lu Haixian.MUGG-based modeling of trajectories and anomaly detection[J].Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(2):244-250.(in Chinese)
[26] Akhter I, Sheikh Y, Khan S, et al.Trajectory space:A dual representation for nonrigid structure from motion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7):1442-1456.
[27] Lee K K, Xu Y.Modeling human actions from learning[A].IEEE/RSJ International Conference on Intelligent Robots and Systems[C].USA:IEEE, 2004, 3.2787-2792.
国家自然科学基金 (No.61203341,No.61075092); 山东省自然科学基金 (No.ZR2011FM011); 山东省高等学校科技发展计划 (No.J11LG01)
/
〈 |
|
〉 |