[1] Kempe J.Discrete quantum walks hit exponentially faster[J]. Probability Theory and Related Fields,2005,133(2):215-235.
[2] Grover L.Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett,1997,79(2):325-328.
[3] Shenvi N,Kempe J,Whaley K B.Quantum random-walk search algorithm[J]. Physical Review A,2003,67(5):052307.
[4] Ambainis A.Quantum walk algorithm for element distinctness[J]. SIAM Journal on Computing,2007,37(1):210-239.
[5] Krovi H.Symmetry in quantum walks[D]. Los Angeles:University of Southern California,2007.
[6] Potocek V.Symmetries in discrete time quantum walks on Cayley graphs[DB/OL]. http://arxiv.org/abs/1211.0172v1,2012.
[7] Rotman J J.An Introduction to the Theory of Groups[M]. New York:Springer,1995.356-357.
[8] Ross K A.Wright C R.Discrete Mathematics[M]. New Jersey:Pearson,2002.583-587.
[9] Venegas-Andraca S E.Quantum walks:A comprehensive review[J]. Quantum Information Processing,2012,11(5):1015-1106.
[10] Kempe J.Quantum random walks—an introductory overview[J]. Contemporary Physics,2003,44(4):307-327.
[11] Neilsen M,Chuang I.量子计算与量子信息[M]. 北京:高等教育出版社,2000.251-252.
[12] Shor P W.Algorithms for quantum computation:discrete logarithms and factoring[A]. Symposium on the Foundations of Computer Science[C]. Washington DC:IEEE Computer Society,1994.124-134. |