[1] RAM I,COHEN I,ELAD M.Patch-ordering-based wavelet frame its use in inverse problem[J]. IEEE Transactions on Image Processing,2014,23(7):2779-2792.
[2] ZHANG Yan,HIRAKAWA K.Blur processing using double discrete wavelet transform[A]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition[C]. Portland,Oregon,USA:IEEE,2013.1091-1098.
[3] LIU Qie-gen,LIANG Dong,SONG Ying,LUO Jian-hua,ZHU Yue-min,LI Wen-shu.Augmented lagrangian-based sparse representation method with dictionary updating for image deblurring[J]. Siam Journal on Imaging Sciences,2013,6(3):1689-1718.
[4] BECK A,TEBOULLE M.Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing,2009,18(11):2419-2434.
[5] XU Li,ZHENG Shi-cheng,JIA Jia-ya.Unnatural l0 sparse representation for natural image deblurring[A]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition[C]. Portland,Oregon,USA:IEEE,2013.1107-1114.
[6] LEFKIMMIATIS S,BOURQUARD A,UNSER M.Hessian-based norm regularization for image restoration with biomedical applications[J]. IEEE Transactions on Image Processing,2012,21(3):983-995.
[7] 王静,吕科,何宁,王茜.基于分裂Bregman方法的全变差图像去模糊[J]. 电子学报,2012,40(8):1503-1508. WANG Jing,LV Ke,HE Ning,WANG Qian.Total variation image deblurring based on split Bregman method[J]. Acta Electronica Sinica,2012,40(8):1503-1508.(in Chinese)
[8] 徐焕宇,孙权森,李大禹,宣丽.基于投影的稀疏表示与非局部正则化图像复原方法[J]. 电子学报,2013,2014,42(7):1299-1304. XU Huan-yu,SUN Quan-sen,LI Da-yu,XUAN Li.Projection-based image restoration via sparse representation and non-local regularization[J]. Acta Electronica Sinica,2014,42(7):1299-1304.(in Chinese)
[9] LI Qia,MICCHELLI C A,SHEN Li-xin,XU Yue-sheng.A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV de-noising models[J]. Inverse Problem,2012,28(9):095003.
[10] FIGUEIREDO M A,NOWAK R,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal on Selected Topics Signal Process,2007(1):586-597.
[11] BIOUCAS-DIAS J M,FIGUEIREDO M A.A new twist:two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing,2007,16(12):2992-3004.
[12] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A.Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing,2010,19(9):2345-2356.
[13] DONOHO D.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics,2006,59(6):797-829.
[14] MOREAU J J.Proximité et dualité dans un espace hilbertien[J]. Bulletin de la Société Mathématique de France,1965,93:273-299.
[15] BECK A,TEBOULLE M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences,2009,2 (1):183-202.
[16] FIGUEIREDO M A,NOWAK R,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal on Selected Topics Signal Process,2007,1(4):586-597.
[17] PORTILLA J.Image restoration through l0 analysis-based sparse optimization in tight frames[A]. Proceedings of the 16th IEEE International Conference on Image Processing[C]. Cairo,Egypt:IEEE,2009.3909-3912.
[18] MICHAELI T,SIGALOV,ELDAR Y C.Partially linear estimation with application to sparse signal recovery from measurement pairs[J]. IEEE Transactions on Signal Processing,2012,60(5):2125-2137. |