电子学报 ›› 2016, Vol. 44 ›› Issue (5): 1227-1233.DOI: 10.3969/j.issn.0372-2112.2016.05.031

• 科研通信 • 上一篇    下一篇

海量车牌识别数据集上基于时空划分的旅行时间计算方法

赵卓峰1,2, 丁维龙1,2, 张帅1   

  1. 1. 北方工业大学云计算研究中心, 北京 100144;
    2. 大规模流数据集成与分析技术北京市重点实验室, 北京 100144
  • 收稿日期:2014-11-24 修回日期:2015-10-19 出版日期:2016-05-25 发布日期:2016-05-25
  • 作者简介:赵卓峰 男,1977年5月出生,山东济南人.博士,现为北方工业大学云计算研究中心副研究员、副主任.研究方向为云计算、流数据处理、服务计算、智能交通.E-mail:edzhao@ncut.edu.cn;丁维龙 男,1983年3月出生,山东泰安人.博士,现为北方工业大学云计算研究中心助理研究员.主要研究方向为流数据处理、流计算及分布式系统.E-mail:dingweilong@ncut.edu.cn
  • 基金资助:

    北京市自然科学基金(No.4131001,No.4162021);北京市属高等学校创新团队建设项目(No.IDHT20130502);北方工业大学校科研基金

A Travel Time Calculation Method Based on Spatio-Temporal Data Partition of Large-Scale License Plate Recognition Data Set

ZHAO Zhuo-feng1,2, DING Wei-long1,2, ZHANG Shuai1   

  1. 1. Cloud Computing Research Center, North China University of Technology, Beijing 100144, China;
    2. Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data, Beijing 100144, China
  • Received:2014-11-24 Revised:2015-10-19 Online:2016-05-25 Published:2016-05-25

摘要:

城市路段旅行时间计算是智能交通领域的一个研究热点.车牌识别数据作为近年来新兴的一种针对城市道路行驶车辆的实时监测数据,具有持续生成且数据量大、时间空间相关等特性.为了利用车牌识别数据集进行高效、准确的旅行时间计算,给出了基于车牌识别数据集的旅行时间计算定义,在此基础上提出一种基于时空划分的流水线式并行计算模型,并给出了该模型基于实时MapReduce的实现.通过一组基于海量真实车牌识别数据集的实验表明,本文方法在亿级车牌识别数据集上的旅行时间计算性能方面相对于直接基于Hadoop的实现可以提高3倍以上,同时具有适合细粒度划分及受路网规模影响小的特点.

关键词: 旅行时间, 时空划分, 流水线并行, 实时MapReduce, 车牌识别数据

Abstract:

The calculation of travel time of city roads is an important issue in the domain of the intelligent transportation system research.License plate recognition data is one kind of monitoring data for vehicles running on urban roads, which has some new features, such as high volume, high velocity and spatio-temporal correlation.In order to achieve travel time calculations on massive license plate recognition data collection, we present the formal definition of travel time calculation based on license plate recognition data set, and propose a pipelined parallel computing model based on spatio-temporal data partition.Moreover, the implementation of the computing model is given based on a real-time MapReduce computing system.The corresponding experiments based on real license plate recognition data set show that, the computing performance on million-level data sets of our method can achieve three times increasing compared to traditional travel time calculation methods.Meanwhile our method is more suitable for fine-grained partition and large scale traffic network.

Key words: travel time, spatio-temporal partition, parallel pipeline, real-time mapreduce, large-scale license plate recognition data

中图分类号: