[1] 朱爱华.基于浮动车数据的路段旅行时间预测研究[D].北京:北京交通大学,2008. Zhu Aihua.Research on link travel time prediction method based on data collected by floating car[D].Beijing Jiaotong University,2008.(in Chinese)
[2] 廖律超,等.一种支持轨迹大数据潜在语义相关性挖掘的谱聚类方法[J].电子学报,2015,43(5):956-964. Liao Lvchao,et al.A spectral clustering method for big trajectory data mining with latent semantic correlation[J].Acta Electronica Sinica,2015,43(5):956-964.(in Chinese)
[3] 姜桂艳,等.基于车牌识别数据的交通拥堵识别方法[J].哈尔滨工业大学学报,2011,43(4):131-135. Jang Jiayan,et al.Traffic congestion identification method based on license plate recognition data[J].Journal of Harbin Institute of Technology,2011,43(4):131-135.(in Chinese)
[4] 刘好德.基于浮动车数据的城市交通状态判别与行程时间计算[R].同济大学,博士后出站报告,2010. Liu Haode.Estimation of urban traffic status and prediction of travel time based on floating car data[R].Research Report for Post-Doctor,Tongji University,2010.(in Chinese)
[5] 朱定局.并行时空模型[M].北京:科学出版社,2009. Zhu Dingjun.Parallel Space-Time Model[M].Beijing,Science Press,2009.(in Chinese)
[6] 亓开元,赵卓峰,房俊,马强.针对高速数据流的大规模数据实时处理方法[J].计算机学报,2012,35(3):477-490. Qi Kaiyuan,Zhao Zhuofeng,Fang Jun.Real-time processing for high speed data stream over large scale data[J].Chinese Journal of Computers,2012,35(3):477-490.(in Chinese)
[7] 亓开元,韩燕波,赵卓峰,等.支持高并发数据流处理的MapReduce中间结果缓存.计算机研究与发展,2013,50(1):111-121. Qi Kaiyuan,Han Yanbo,Zhao Zhuofeng,et al.MapReduce intermediate result cache for concurrent data stream processing[J].Journal of Computer Research and Development,2013,50(1):111-121.(in Chinese)
[8] 张帅,赵卓峰,丁维龙.基于MapReduce的城市道路旅行时间实测计算[J].计算机与数字工程,2014,42(9):1542-1546. Zhang Shuai,Zhao Zhuofeng,Ding Weilong.Urban road trip time measured calculation based on mapReduce[J].Computer & Digital Engineering,2014,42(9):1542-1546. (in Chinese)
[9] 廖飞,黄晟,龚德俊.基于Hadoop的城市道路交通流量数据分布式存储与挖掘分析研究[J].公路与汽运,2013,27(5):82-86. Liao Fei,Huang Sheng,Gong Dejun.Distributed storage and data mining analysis of urban road traffic based on hadoop[J].Highways & Automotive Applications,2013,27(5):82-86.(in Chinese)
[10] Lizhe Wang,et al.G-Hadoop:MapReduce across distributed data centers for data-intensive computing[J].Future Generation Computer Systems,2013,29(3):739-750.
[11] Yingyi Bu,Bill Howe,Magdalena Balazinska,et al.The haLoop approach to large-scale iterative data analysis[J].VLDB Journal,2012,21(2):169-190.
[12] 张鹏,刘庆云,谭建龙,等.流水行云:支持可扩展的并行分布式流处理系统[J].电子学报,2015,43(4):639-646. Zhang Peng,Liu Qingyun,Tan Jianlong,et al.SPSPS:A scalable parallel-distributed stream processing system[J].Acta Electronica Sinica,2015,43(4):639-646.(in Chinese)
[13] Yanfeng Zhang,et al.iMapReduce:A distributed computing framework for iterative computation[J].Journal of Grid Computing,2012,10:47-68.
[14] Matei Zaharia.An Architecture for fast and general data processing on large clusters[R].University of California,Berkeley,Technical Report No.UCB/EECS-2014-12,2014. |